1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
import torch
import torchaudio
from parameterized import parameterized, parameterized_class
from torchaudio_unittest.common_utils import (
get_asset_path,
is_ffmpeg_available,
nested_params,
rgb_to_yuv_ccir,
skipIfNoFFmpeg,
skipIfNoModule,
TempDirMixin,
TorchaudioTestCase,
)
if is_ffmpeg_available():
from torchaudio.io import StreamReader, StreamWriter
def get_audio_chunk(fmt, sample_rate, num_channels):
path = get_asset_path("nasa_13013.mp4")
s = StreamReader(path)
for _ in range(num_channels):
s.add_basic_audio_stream(-1, -1, format=fmt, sample_rate=sample_rate)
s.stream()
s.process_all_packets()
chunks = [chunk[:, :1] for chunk in s.pop_chunks()]
return torch.cat(chunks, 1)
def get_video_chunk(fmt, frame_rate, *, width, height):
path = get_asset_path("nasa_13013_no_audio.mp4")
s = StreamReader(path)
s.add_basic_video_stream(-1, -1, format=fmt, frame_rate=frame_rate, width=width, height=height)
s.stream()
s.process_all_packets()
(chunk,) = s.pop_chunks()
return chunk
################################################################################
# Helper decorator and Mixin to duplicate the tests for fileobj
_media_source = parameterized_class(
("test_fileobj",),
[(False,), (True,)],
class_name_func=lambda cls, _, params: f'{cls.__name__}{"_fileobj" if params["test_fileobj"] else "_path"}',
)
class _MediaSourceMixin:
def setUp(self):
super().setUp()
self.src = None
def get_dst(self, path):
if not self.test_fileobj:
return path
if self.src is not None:
raise ValueError("get_dst can be called only once.")
self.src = open(path, "wb")
return self.src
def tearDown(self):
if self.src is not None:
self.src.flush()
self.src.close()
super().tearDown()
################################################################################
@skipIfNoFFmpeg
@_media_source
class StreamWriterInterfaceTest(_MediaSourceMixin, TempDirMixin, TorchaudioTestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
torchaudio.utils.ffmpeg_utils.set_log_level(32)
@classmethod
def tearDownClass(cls):
torchaudio.utils.ffmpeg_utils.set_log_level(8)
super().tearDownClass()
def get_dst(self, path):
return super().get_dst(self.get_temp_path(path))
def get_buf(self, path):
with open(self.get_temp_path(path), "rb") as fileobj:
return fileobj.read()
@skipIfNoModule("tinytag")
def test_metadata_overwrite(self):
"""When set_metadata is called multiple times, only entries from the last call are saved"""
from tinytag import TinyTag
src_fmt = "s16"
sample_rate = 8000
num_channels = 1
dst = self.get_dst("test.mp3")
s = StreamWriter(dst, format="mp3")
s.set_metadata(metadata={"artist": "torchaudio", "title": "foo"})
s.set_metadata(metadata={"title": self.id()})
s.add_audio_stream(sample_rate, num_channels, format=src_fmt)
chunk = get_audio_chunk(src_fmt, sample_rate, num_channels)
with s.open():
s.write_audio_chunk(0, chunk)
path = self.get_temp_path("test.mp3")
tag = TinyTag.get(path)
assert tag.artist is None
assert tag.title == self.id()
@nested_params(
# Note: "s64" causes UB (left shift of 1 by 63 places cannot be represented in type 'long')
# thus it's omitted.
["u8", "s16", "s32", "flt", "dbl"],
[8000, 16000, 44100],
[1, 2, 4],
)
def test_valid_audio_muxer_and_codecs_wav(self, src_fmt, sample_rate, num_channels):
"""Tensor of various dtypes can be saved as wav format."""
path = self.get_dst("test.wav")
s = StreamWriter(path, format="wav")
s.set_metadata(metadata={"artist": "torchaudio", "title": self.id()})
s.add_audio_stream(sample_rate, num_channels, format=src_fmt)
chunk = get_audio_chunk(src_fmt, sample_rate, num_channels)
with s.open():
s.write_audio_chunk(0, chunk)
@parameterized.expand(
[
("mp3", 8000, 1, "s32p", None),
("mp3", 16000, 2, "fltp", None),
("mp3", 44100, 1, "s16p", {"abr": "true"}),
("flac", 8000, 1, "s16", None),
("flac", 16000, 2, "s32", None),
("opus", 48000, 2, None, {"strict": "experimental"}),
("adts", 8000, 1, "fltp", None), # AAC format
]
)
def test_valid_audio_muxer_and_codecs(self, ext, sample_rate, num_channels, encoder_format, encoder_option):
"""Tensor of various dtypes can be saved as given format."""
path = self.get_dst(f"test.{ext}")
s = StreamWriter(path, format=ext)
s.set_metadata(metadata={"artist": "torchaudio", "title": self.id()})
s.add_audio_stream(sample_rate, num_channels, encoder_option=encoder_option, encoder_format=encoder_format)
chunk = get_audio_chunk("flt", sample_rate, num_channels)
with s.open():
s.write_audio_chunk(0, chunk)
@nested_params(
[
"gray8",
"rgb24",
"bgr24",
"yuv444p",
],
[(128, 64), (720, 576)],
)
def test_valid_video_muxer_and_codecs(self, src_format, size):
"""Image tensors of various formats can be saved as mp4"""
ext = "mp4"
frame_rate = 10
width, height = size
path = self.get_dst(f"test.{ext}")
s = StreamWriter(path, format=ext)
s.add_video_stream(frame_rate, width, height, format=src_format)
chunk = get_video_chunk(src_format, frame_rate, width=width, height=height)
with s.open():
s.write_video_chunk(0, chunk)
def test_valid_audio_video_muxer(self):
"""Audio/image tensors are saved as single video"""
ext = "mp4"
sample_rate = 16000
num_channels = 3
frame_rate = 30000 / 1001
width, height = 720, 576
video_fmt = "yuv444p"
path = self.get_dst(f"test.{ext}")
s = StreamWriter(path, format=ext)
s.set_metadata({"artist": "torchaudio", "title": self.id()})
s.add_audio_stream(sample_rate, num_channels)
s.add_video_stream(frame_rate, width, height, format=video_fmt)
audio = get_audio_chunk("flt", sample_rate, num_channels)
video = get_video_chunk(video_fmt, frame_rate, height=height, width=width)
with s.open():
s.write_audio_chunk(0, audio)
s.write_video_chunk(1, video)
@nested_params(
[
("gray8", "gray8"),
("rgb24", "rgb24"),
("bgr24", "bgr24"),
("yuv444p", "yuv444p"),
("rgb24", "yuv444p"),
("bgr24", "yuv444p"),
],
)
def test_video_raw_out(self, formats):
"""Verify that viedo out is correct with/without color space conversion"""
filename = "test.rawvideo"
frame_rate = 30000 / 1001
width, height = 720, 576
src_fmt, encoder_fmt = formats
frames = int(frame_rate * 2)
channels = 1 if src_fmt == "gray8" else 3
# Generate data
src_size = (frames, channels, height, width)
chunk = torch.randint(low=0, high=255, size=src_size, dtype=torch.uint8)
# Write data
dst = self.get_dst(filename)
s = StreamWriter(dst, format="rawvideo")
s.add_video_stream(frame_rate, width, height, format=src_fmt, encoder_format=encoder_fmt)
with s.open():
s.write_video_chunk(0, chunk)
# Fetch the written data
if self.test_fileobj:
dst.flush()
buf = self.get_buf(filename)
result = torch.frombuffer(buf, dtype=torch.uint8)
if encoder_fmt.endswith("p"):
result = result.reshape(src_size)
else:
result = result.reshape(frames, height, width, channels).permute(0, 3, 1, 2)
# check that they are same
if src_fmt == encoder_fmt:
expected = chunk
else:
if src_fmt == "bgr24":
chunk = chunk[:, [2, 1, 0], :, :]
expected = rgb_to_yuv_ccir(chunk)
self.assertEqual(expected, result, atol=1, rtol=0)
@nested_params([25, 30], [(78, 96), (240, 426), (360, 640)], ["yuv444p", "rgb24"])
def test_video_num_frames(self, framerate, resolution, format):
"""Saving video as MP4 properly keep all the frames"""
ext = "mp4"
filename = f"test.{ext}"
h, w = resolution
# Write data
dst = self.get_dst(filename)
s = torchaudio.io.StreamWriter(dst=dst, format=ext)
s.add_video_stream(frame_rate=framerate, height=h, width=w, format=format)
chunk = torch.stack([torch.full((3, h, w), i, dtype=torch.uint8) for i in torch.linspace(0, 255, 256)])
with s.open():
s.write_video_chunk(0, chunk)
if self.test_fileobj:
dst.flush()
# Load data
s = torchaudio.io.StreamReader(src=self.get_temp_path(filename))
print(s.get_src_stream_info(0))
s.add_video_stream(-1)
s.process_all_packets()
(saved,) = s.pop_chunks()
assert saved.shape == chunk.shape
if format == "yuv444p":
# The following works if encoder_format is also yuv444p.
# Otherwise, the typical encoder format is yuv420p which incurs some data loss,
# and assertEqual fails.
#
# This is the case for libx264 encoder, but it's not always available.
# ffmpeg==4.2 from conda-forge (osx-arm64) comes with it but ffmpeg==5.1.2 does not.
# Since we do not have function to check the runtime availability of encoders,
# commenting it out for now.
# self.assertEqual(saved, chunk)
pass
@nested_params(
["wav", "mp3", "flac"],
[8000, 16000, 44100],
[1, 2],
)
def test_audio_num_frames(self, ext, sample_rate, num_channels):
""""""
filename = f"test.{ext}"
# Write data
dst = self.get_dst(filename)
s = torchaudio.io.StreamWriter(dst=dst, format=ext)
s.add_audio_stream(sample_rate=sample_rate, num_channels=num_channels)
freq = 300
duration = 60
theta = torch.linspace(0, freq * 2 * 3.14 * duration, sample_rate * duration)
if num_channels == 1:
chunk = torch.sin(theta).unsqueeze(-1)
else:
chunk = torch.stack([torch.sin(theta), torch.cos(theta)], dim=-1)
with s.open():
s.write_audio_chunk(0, chunk)
if self.test_fileobj:
dst.flush()
# Load data
s = torchaudio.io.StreamReader(src=self.get_temp_path(filename))
s.add_audio_stream(-1)
s.process_all_packets()
(saved,) = s.pop_chunks()
assert saved.shape == chunk.shape
if format in ["wav", "flac"]:
self.assertEqual(saved, chunk)
def test_preserve_fps(self):
"""Decimal point frame rate is properly saved
https://github.com/pytorch/audio/issues/2830
"""
ext = "mp4"
filename = f"test.{ext}"
frame_rate = 5000 / 167
width, height = 96, 128
# Write data
dst = self.get_dst(filename)
writer = torchaudio.io.StreamWriter(dst=dst, format=ext)
writer.add_video_stream(frame_rate=frame_rate, width=width, height=height)
video = torch.randint(256, (90, 3, height, width), dtype=torch.uint8)
with writer.open():
writer.write_video_chunk(0, video)
if self.test_fileobj:
dst.flush()
# Load data
reader = torchaudio.io.StreamReader(src=self.get_temp_path(filename))
assert reader.get_src_stream_info(0).frame_rate == frame_rate
|