1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
import itertools
import torch
from parameterized import parameterized
from torchaudio_unittest.common_utils import get_asset_path, skipIfNoCtcDecoder, TempDirMixin, TorchaudioTestCase
NUM_TOKENS = 8
@skipIfNoCtcDecoder
class CTCDecoderTest(TempDirMixin, TorchaudioTestCase):
def _get_custom_kenlm(self, kenlm_file):
from .ctc_decoder_utils import CustomKenLM
dict_file = get_asset_path("decoder/lexicon.txt")
custom_lm = CustomKenLM(kenlm_file, dict_file)
return custom_lm
def _get_biased_nnlm(self, dict_file, keyword):
from .ctc_decoder_utils import BiasedLM, CustomBiasedLM
model = BiasedLM(dict_file, keyword)
biased_lm = CustomBiasedLM(model, dict_file)
return biased_lm
def _get_decoder(self, tokens=None, lm=None, use_lexicon=True, **kwargs):
from torchaudio.models.decoder import ctc_decoder
lexicon_file = get_asset_path("decoder/lexicon.txt") if use_lexicon else None
if tokens is None:
tokens = get_asset_path("decoder/tokens.txt")
return ctc_decoder(
lexicon=lexicon_file,
tokens=tokens,
lm=lm,
**kwargs,
)
def _get_emissions(self):
B, T, N = 4, 15, NUM_TOKENS
emissions = torch.rand(B, T, N)
return emissions
@parameterized.expand(
list(
itertools.product(
[get_asset_path("decoder/tokens.txt"), ["-", "|", "f", "o", "b", "a", "r"]],
[None, get_asset_path("decoder/kenlm.arpa")],
[True, False],
)
),
)
def test_construct_basic_decoder(self, tokens, lm, use_lexicon):
self._get_decoder(tokens=tokens, lm=lm, use_lexicon=use_lexicon)
@parameterized.expand(
[(True,), (False,)],
)
def test_shape(self, use_lexicon):
emissions = self._get_emissions()
decoder = self._get_decoder(use_lexicon=use_lexicon)
results = decoder(emissions)
self.assertEqual(len(results), emissions.shape[0])
@parameterized.expand(
[(True,), (False,)],
)
def test_timesteps_shape(self, use_lexicon):
"""Each token should correspond with a timestep"""
emissions = self._get_emissions()
decoder = self._get_decoder(use_lexicon=use_lexicon)
results = decoder(emissions)
for i in range(emissions.shape[0]):
result = results[i][0]
self.assertEqual(result.tokens.shape, result.timesteps.shape)
def test_no_lm_decoder(self):
"""Check that the following produce the same result
- using no LM (C++ based implementation)
- using no LM (Custom Python based wrapper)
- using a (Ken)LM with 0 weight
"""
from .ctc_decoder_utils import CustomZeroLM
emissions = self._get_emissions()
custom_zerolm = CustomZeroLM()
zerolm_decoder_custom = self._get_decoder(lm=custom_zerolm)
zerolm_decoder_cpp = self._get_decoder(lm=None)
kenlm_file = get_asset_path("decoder/kenlm.arpa")
kenlm_decoder = self._get_decoder(lm=kenlm_file, lm_weight=0)
zerolm_custom_results = zerolm_decoder_custom(emissions)
zerolm_cpp_results = zerolm_decoder_cpp(emissions)
kenlm_results = kenlm_decoder(emissions)
self.assertEqual(zerolm_cpp_results, zerolm_custom_results)
self.assertEqual(zerolm_cpp_results, kenlm_results)
def test_custom_kenlm_decoder(self):
"""Check that creating a custom Python KenLM wrapper produces same results as C++ based KenLM"""
emissions = self._get_emissions()
kenlm_file = get_asset_path("decoder/kenlm.arpa")
custom_kenlm = self._get_custom_kenlm(kenlm_file)
kenlm_decoder_custom = self._get_decoder(lm=custom_kenlm)
kenlm_decoder_cpp = self._get_decoder(lm=kenlm_file)
kenlm_custom_results = kenlm_decoder_custom(emissions)
kenlm_cpp_results = kenlm_decoder_cpp(emissions)
self.assertEqual(kenlm_custom_results, kenlm_cpp_results)
@parameterized.expand(
[
(get_asset_path("decoder/nnlm_lex_dict.txt"), "foo", True),
(get_asset_path("decoder/nnlm_lexfree_dict.txt"), "f", False),
]
)
def test_custom_nnlm_decoder(self, lm_dict, keyword, use_lexicon):
"""Check that biased NNLM only produces biased words"""
emissions = self._get_emissions()
custom_nnlm = self._get_biased_nnlm(lm_dict, keyword)
nnlm_decoder = self._get_decoder(lm=custom_nnlm, lm_dict=lm_dict, use_lexicon=use_lexicon, lm_weight=10)
nnlm_results = nnlm_decoder(emissions)
if use_lexicon:
output = [result[0].words for result in nnlm_results]
else:
tokens = [nnlm_decoder.idxs_to_tokens(result[0].tokens) for result in nnlm_results]
output = [list(filter(("|").__ne__, t)) for t in tokens] # filter out silence characters
lens = [len(out) for out in output]
expected = [[keyword] * len for len in lens] # all of output should match the biased keyword
assert expected == output
def test_get_timesteps(self):
unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3])
decoder = self._get_decoder()
timesteps = decoder._get_timesteps(unprocessed_tokens)
expected = [0, 3, 7]
self.assertEqual(timesteps, expected)
def test_get_tokens_and_idxs(self):
unprocessed_tokens = torch.tensor([2, 2, 0, 3, 3, 3, 0, 3]) # ["f", "f", "-", "o", "o", "o", "-", "o"]
decoder = self._get_decoder()
token_ids = decoder._get_tokens(unprocessed_tokens)
tokens = decoder.idxs_to_tokens(token_ids)
expected_ids = [2, 3, 3]
self.assertEqual(token_ids, expected_ids)
expected_tokens = ["f", "o", "o"]
self.assertEqual(tokens, expected_tokens)
@parameterized.expand([(get_asset_path("decoder/tokens.txt"),), (["-", "|", "f", "o", "b", "a", "r"],)])
def test_index_to_tokens(self, tokens):
# decoder tokens: '-' '|' 'f' 'o' 'b' 'a' 'r'
decoder = self._get_decoder(tokens)
idxs = torch.LongTensor((1, 2, 1, 3, 5))
tokens = decoder.idxs_to_tokens(idxs)
expected_tokens = ["|", "f", "|", "o", "a"]
self.assertEqual(tokens, expected_tokens)
|