File: fairseq_integration_test.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (251 lines) | stat: -rw-r--r-- 9,231 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import json

import torch
from parameterized import parameterized
from torchaudio.models.wav2vec2 import (
    hubert_base,
    hubert_large,
    hubert_xlarge,
    wav2vec2_base,
    wav2vec2_large,
    wav2vec2_large_lv60k,
)
from torchaudio.models.wav2vec2.utils import import_fairseq_model
from torchaudio_unittest.common_utils import get_asset_path, skipIfNoModule, TorchaudioTestCase


def _load_config(*paths):
    with open(f'{get_asset_path("wav2vec2", "fairseq", *paths)}.json', "r") as file_:
        return json.load(file_)


def _name_func(testcase_func, i, param):
    return f"{testcase_func.__name__}_{i}_{param[0][1].__name__}"


# Pretraining models
WAV2VEC2_BASE = _load_config("wav2vec_small")
WAV2VEC2_LARGE = _load_config("libri960_big")
WAV2VEC2_LARGE_LV60K = _load_config("wav2vec_vox_new")
WAV2VEC2_XLSR_53_56K = _load_config("xlsr_53_56k")
HUBERT_BASE = _load_config("hubert_base_ls960")
HUBERT_LARGE_LL60K = _load_config("hubert_large_ll60k")
HUBERT_XLARGE_LL60K = _load_config("hubert_xtralarge_ll60k")
# Finetuning models
WAV2VEC2_BASE_960H = _load_config("wav2vec_small_960h")
WAV2VEC2_LARGE_960H = _load_config("wav2vec_large_960h")
WAV2VEC2_LARGE_LV60K_960H = _load_config("wav2vec_large_lv60k_960h")
WAV2VEC2_LARGE_LV60K_SELF_960H = _load_config("wav2vec_large_lv60k_self_960h")
HUBERT_LARGE = _load_config("hubert_large_ll60k_finetune_ls960")
HUBERT_XLARGE = _load_config("hubert_xtralarge_ll60k_finetune_ls960")


# Config and corresponding factory functions
WAV2VEC2_PRETRAINING_CONFIGS = parameterized.expand(
    [
        (WAV2VEC2_BASE, wav2vec2_base),
        (WAV2VEC2_LARGE, wav2vec2_large),
        (WAV2VEC2_LARGE_LV60K, wav2vec2_large_lv60k),
        (WAV2VEC2_XLSR_53_56K, wav2vec2_large_lv60k),
    ],
    name_func=_name_func,
)
HUBERT_PRETRAINING_CONFIGS = parameterized.expand(
    [
        (HUBERT_BASE, hubert_base),
        (HUBERT_LARGE_LL60K, hubert_large),
        (HUBERT_XLARGE_LL60K, hubert_xlarge),
    ],
    name_func=_name_func,
)
ALL_PRETRAINING_CONFIGS = parameterized.expand(
    [
        (WAV2VEC2_BASE, wav2vec2_base),
        (WAV2VEC2_LARGE, wav2vec2_large),
        (WAV2VEC2_LARGE_LV60K, wav2vec2_large_lv60k),
        (WAV2VEC2_XLSR_53_56K, wav2vec2_large_lv60k),
        (HUBERT_BASE, hubert_base),
        (HUBERT_LARGE_LL60K, hubert_large),
        (HUBERT_XLARGE_LL60K, hubert_xlarge),
    ],
    name_func=_name_func,
)
FINETUNING_CONFIGS = parameterized.expand(
    [
        (WAV2VEC2_BASE_960H, wav2vec2_base),
        (WAV2VEC2_LARGE_960H, wav2vec2_large),
        (WAV2VEC2_LARGE_LV60K_960H, wav2vec2_large_lv60k),
        (WAV2VEC2_LARGE_LV60K_SELF_960H, wav2vec2_large_lv60k),
        (HUBERT_LARGE, hubert_large),
        (HUBERT_XLARGE, hubert_xlarge),
    ],
    name_func=_name_func,
)


@skipIfNoModule("fairseq")
class TestFairseqIntegration(TorchaudioTestCase):
    """Test the process of importing the models from fairseq.

    Test methods in this test suite check the following things
    1. Models loaded with fairseq cane be imported.
    2. The same model can be recreated without fairseq.
    """

    def _get_model(self, config, num_out=None):
        import copy

        from fairseq.models.hubert.hubert import HubertConfig, HubertModel
        from fairseq.models.hubert.hubert_asr import HubertCtcConfig, HubertEncoder
        from fairseq.models.wav2vec.wav2vec2 import Wav2Vec2Config, Wav2Vec2Model
        from fairseq.models.wav2vec.wav2vec2_asr import Wav2Vec2CtcConfig, Wav2VecEncoder
        from fairseq.tasks.hubert_pretraining import HubertPretrainingConfig
        from omegaconf import OmegaConf

        if config["_name"] == "wav2vec_ctc":
            config = copy.deepcopy(config)
            config["w2v_args"] = OmegaConf.create(config["w2v_args"])
            return Wav2VecEncoder(Wav2Vec2CtcConfig(**config), num_out)
        if config["_name"] == "wav2vec2":
            return Wav2Vec2Model(Wav2Vec2Config(**config))
        if config["_name"] == "hubert_ctc":
            config = copy.deepcopy(config)
            config["w2v_args"] = OmegaConf.create(config["w2v_args"])
            ctc_cfg = HubertCtcConfig(**config)
            return HubertEncoder(ctc_cfg, tgt_dict=range(num_out))
        if config["_name"] == "hubert":
            dicts = [list(range(i)) for i in config["num_classes"]]
            return HubertModel(
                HubertConfig(**config["model"]),
                HubertPretrainingConfig(**config["task"]),
                dicts,
            )
        raise ValueError(f'Unexpected configuration: {config["_name"]}')

    @WAV2VEC2_PRETRAINING_CONFIGS
    def test_import_wave2vec2_pretraining_model(self, config, _):
        """Wav2vec2 pretraining models from fairseq can be imported and yields the same results"""
        batch_size, num_frames = 3, 1024

        original = self._get_model(config).eval()
        imported = import_fairseq_model(original).eval()

        x = torch.randn(batch_size, num_frames)
        hyp, _ = imported.extract_features(x)
        refs = original.extract_features(x, padding_mask=torch.zeros_like(x), layer=-1)
        for i, (ref, _) in enumerate(refs["layer_results"]):
            self.assertEqual(hyp[i], ref.transpose(0, 1))

    @HUBERT_PRETRAINING_CONFIGS
    def test_import_hubert_pretraining_model(self, config, factory_func):
        """HuBERT pretraining models from fairseq can be imported and yields the same results"""
        batch_size, num_frames = 3, 1024

        original = self._get_model(config).eval()
        imported = import_fairseq_model(original).eval()

        x = torch.randn(batch_size, num_frames)
        mask = torch.zeros_like(x)
        hyp, _ = imported.extract_features(x)

        # check the last layer
        ref, _ = original.extract_features(x, padding_mask=mask, output_layer=len(original.encoder.layers))
        atol = 3.0e-05 if factory_func is hubert_xlarge else 1.0e-5
        self.assertEqual(hyp[-1], ref, atol=atol, rtol=1.3e-6)

        # check the first layer
        ref, _ = original.extract_features(x, padding_mask=mask, output_layer=1)
        self.assertEqual(hyp[0], ref)

    @ALL_PRETRAINING_CONFIGS
    def test_recreate_pretraining_model(self, config, factory_func):
        """Imported pretraining models can be recreated via a factory function without fairseq."""
        batch_size, num_frames = 3, 1024

        original = self._get_model(config).eval()
        imported = import_fairseq_model(original).eval()

        reloaded = factory_func()
        reloaded.load_state_dict(imported.state_dict())
        reloaded.eval()

        x = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )
        # Without mask
        ref, _ = imported(x)
        hyp, _ = reloaded(x)
        self.assertEqual(ref, hyp)

        # With mask
        ref, ref_lengths = imported(x, lengths)
        hyp, hyp_lengths = reloaded(x, lengths)
        self.assertEqual(ref, hyp)
        self.assertEqual(ref_lengths, hyp_lengths)

    @FINETUNING_CONFIGS
    def test_import_finetuning_model(self, config, _):
        """Fintuned wav2vec2 models from fairseq can be imported and yields the same results"""
        num_out = 28
        batch_size, num_frames = 3, 1024

        original = self._get_model(config, num_out).eval()
        imported = import_fairseq_model(original).eval()

        # Without mask
        torch.manual_seed(0)
        x = torch.randn(batch_size, num_frames)
        ref = original(x, torch.zeros_like(x))["encoder_out"].transpose(0, 1)
        hyp, _ = imported(x)
        self.assertEqual(ref, hyp)

        # With mask
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )
        mask = torch.arange(num_frames).expand(batch_size, num_frames) >= lengths[:, None]
        ref = original(x, mask)["encoder_out"].transpose(0, 1)
        hyp, output_lengths = imported(x, lengths)
        for i, l in enumerate(output_lengths):
            self.assertEqual(ref[i, :l, ...], hyp[i, :l, ...])

    @FINETUNING_CONFIGS
    def test_recreate_finetuning_model(self, config, factory_func):
        """Imported finetuning models can be recreated via a factory function without fairseq."""
        num_out = 28
        batch_size, num_frames = 3, 1024

        original = self._get_model(config, num_out).eval()
        imported = import_fairseq_model(original).eval()

        reloaded = factory_func(aux_num_out=num_out)
        reloaded.load_state_dict(imported.state_dict())
        reloaded.eval()

        # Without mask
        x = torch.randn(batch_size, num_frames)
        ref, _ = imported(x)
        hyp, _ = reloaded(x)
        self.assertEqual(ref, hyp)

        # With mask
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )
        ref, ref_lengths = imported(x, lengths)
        hyp, hyp_lengths = reloaded(x, lengths)
        self.assertEqual(ref, hyp)
        self.assertEqual(ref_lengths, hyp_lengths)