1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
import json
import torch
from parameterized import parameterized
from torchaudio.models.wav2vec2 import wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k
from torchaudio.models.wav2vec2.utils import import_huggingface_model
from torchaudio_unittest.common_utils import get_asset_path, skipIfNoModule, TorchaudioTestCase
def _load_config(*paths):
with open(f'{get_asset_path("wav2vec2", "huggingface", *paths)}.json', "r") as file_:
return json.load(file_)
def _name_func(testcase_func, i, param):
return f"{testcase_func.__name__}_{i}_{param[0][1].__name__}"
# Pretrained
HF_BASE = _load_config("wav2vec2-base")
HF_LARGE = _load_config("wav2vec2-large")
HF_LARGE_LV60 = _load_config("wav2vec2-large-lv60")
HF_LARGE_XLSR_53 = _load_config("wav2vec2-large-xlsr-53")
HF_BASE_10K_VOXPOPULI = _load_config("wav2vec2-base-10k-voxpopuli")
# Finetuned
HF_BASE_960H = _load_config("wav2vec2-base-960h")
HF_LARGE_960H = _load_config("wav2vec2-large-960h")
HF_LARGE_LV60_960H = _load_config("wav2vec2-large-960h-lv60")
HF_LARGE_LV60_SELF_960H = _load_config("wav2vec2-large-960h-lv60-self")
HF_LARGE_XLSR_DE = _load_config("wav2vec2-large-xlsr-53-german")
# Config and corresponding factory functions
PRETRAIN_CONFIGS = parameterized.expand(
[
(HF_BASE, wav2vec2_base),
(HF_LARGE, wav2vec2_large),
(HF_LARGE_LV60, wav2vec2_large_lv60k),
(HF_LARGE_XLSR_53, wav2vec2_large_lv60k),
(HF_BASE_10K_VOXPOPULI, wav2vec2_base),
],
name_func=_name_func,
)
FINETUNE_CONFIGS = parameterized.expand(
[
(HF_BASE_960H, wav2vec2_base),
(HF_LARGE_960H, wav2vec2_large),
(HF_LARGE_LV60_960H, wav2vec2_large_lv60k),
(HF_LARGE_LV60_SELF_960H, wav2vec2_large_lv60k),
(HF_LARGE_XLSR_DE, wav2vec2_large_lv60k),
],
name_func=_name_func,
)
@skipIfNoModule("transformers")
class TestHFIntegration(TorchaudioTestCase):
"""Test the process of importing the models from Hugging Face Transformers
Test methods in this test suite check the following things
1. Models loaded with Hugging Face Transformers cane be imported.
2. The same model can be recreated without Hugging Face Transformers.
"""
def _get_model(self, config):
# Helper function to avoid importing transformers on module scope.
# Normally, we use `is_module_available` helper function to check if
# the library is available, and import it on module scope if available.
# However, somehow, once "transformers" is imported, `is_module_available`
# starts to fail. Therefore, we defer importing "transformers" until
# the actual tests are started.
from transformers.models.wav2vec2 import Wav2Vec2Config, Wav2Vec2ForCTC, Wav2Vec2Model
if config["architectures"] == ["Wav2Vec2Model"]:
return Wav2Vec2Model(Wav2Vec2Config(**config))
if config["architectures"] == ["Wav2Vec2ForCTC"]:
return Wav2Vec2ForCTC(Wav2Vec2Config(**config))
raise ValueError(f'Unexpected arch: {config["architectures"]}')
def _test_import_pretrain(self, original, imported, config):
# FeatureExtractor
x = torch.randn(3, 1024)
ref = original.feature_extractor(x).transpose(1, 2)
hyp, _ = imported.feature_extractor(x, None)
self.assertEqual(ref, hyp)
# Feature projection
x = torch.randn(3, 10, config["conv_dim"][-1])
ref = original.feature_projection(x)[0]
hyp = imported.encoder.feature_projection(x)
self.assertEqual(ref, hyp)
# Convolutional Positional Encoder
x = torch.randn(3, 256, config["hidden_size"])
ref = original.encoder.pos_conv_embed(x)
hyp = imported.encoder.transformer.pos_conv_embed(x)
self.assertEqual(ref, hyp)
# Encoder Transformer Layer
for original_, imported_ in zip(original.encoder.layers, imported.encoder.transformer.layers):
b, l, e = 16, 3, config["hidden_size"]
x = torch.randn(b, l, e)
mask = torch.randn(b, 1, l, l)
(ref,) = original_(x, attention_mask=mask, output_attentions=False)
hyp = imported_(x, mask)
self.assertEqual(ref, hyp)
# The whole Encoder Transformer
b, l, e = 16, 3, config["hidden_size"]
x = torch.randn(b, l, e)
ref = original.encoder(x).last_hidden_state
hyp = imported.encoder.transformer(x)
self.assertEqual(ref, hyp)
def _test_import_finetune(self, original, imported, config):
# Aux
x = torch.randn(3, 10, config["hidden_size"])
ref = original.lm_head(x)
hyp = imported.aux(x)
self.assertEqual(ref, hyp)
# The whole model without mask
x = torch.randn(3, 1024)
ref = original(x).logits
hyp, _ = imported(x)
self.assertEqual(ref, hyp)
# The whole model without mask
batch_size, num_frames = 3, 1024
x = torch.randn(batch_size, num_frames)
ref = original(x).logits
hyp, _ = imported(x)
self.assertEqual(ref, hyp)
# The whole model with mask
batch_size, num_frames = 3, 1024
x = torch.randn(batch_size, num_frames)
lengths = torch.randint(
low=0,
high=num_frames,
size=[
batch_size,
],
)
mask = torch.arange(num_frames).expand(batch_size, num_frames) < lengths[:, None]
ref = original(x, attention_mask=mask).logits
hyp, output_lengths = imported(x, lengths)
for i, l in enumerate(output_lengths):
self.assertEqual(ref[i, :l, ...], hyp[i, :l, ...])
@PRETRAIN_CONFIGS
def test_import_pretrain(self, config, _):
"""wav2vec2 models from HF transformers can be imported and yields the same results"""
original = self._get_model(config).eval()
imported = import_huggingface_model(original).eval()
self._test_import_pretrain(original, imported, config)
@FINETUNE_CONFIGS
def test_import_finetune(self, config, _):
"""wav2vec2 models from HF transformers can be imported and yields the same results"""
original = self._get_model(config).eval()
imported = import_huggingface_model(original).eval()
self._test_import_pretrain(original.wav2vec2, imported, config)
self._test_import_finetune(original, imported, config)
def _test_recreate(self, imported, reloaded, config):
# FeatureExtractor
x = torch.randn(3, 1024)
ref, _ = imported.feature_extractor(x, None)
hyp, _ = reloaded.feature_extractor(x, None)
self.assertEqual(ref, hyp)
# Feature projection
x = torch.randn(3, 10, config["conv_dim"][-1])
ref = imported.encoder.feature_projection(x)
hyp = reloaded.encoder.feature_projection(x)
self.assertEqual(ref, hyp)
# Convolutional Positional Encoder
x = torch.randn(3, 256, config["hidden_size"])
ref = imported.encoder.transformer.pos_conv_embed(x)
hyp = reloaded.encoder.transformer.pos_conv_embed(x)
self.assertEqual(ref, hyp)
# Encoder Transformer Layer
for imported_, reloaded_ in zip(imported.encoder.transformer.layers, reloaded.encoder.transformer.layers):
b, l, e = 16, 3, config["hidden_size"]
x = torch.randn(b, l, e)
mask = torch.randn(b, 1, l, l)
ref = imported_(x, mask)
hyp = reloaded_(x, mask)
self.assertEqual(ref, hyp)
# The whole Encoder Transformer
# TODO: Add mask pattern. Expected mask shapes and values are different.
b, l, e = 16, 3, config["hidden_size"]
x = torch.randn(b, l, e)
mask = torch.randn(b, 1, l, l)
ref = imported.encoder.transformer(x)
hyp = reloaded.encoder.transformer(x)
self.assertEqual(ref, hyp)
# Aux
if imported.aux is not None:
x = torch.randn(3, 10, config["hidden_size"])
ref = imported.aux(x)
hyp = reloaded.aux(x)
self.assertEqual(ref, hyp)
# The whole model
x = torch.randn(3, 1024)
ref, _ = imported(x)
hyp, _ = reloaded(x)
self.assertEqual(ref, hyp)
@PRETRAIN_CONFIGS
def test_recreate_pretrain(self, config, factory_func):
"""Imported models can be recreated via a factory function without Hugging Face transformers."""
imported = import_huggingface_model(self._get_model(config)).eval()
reloaded = factory_func()
reloaded.load_state_dict(imported.state_dict())
reloaded.eval()
self._test_recreate(imported, reloaded, config)
@FINETUNE_CONFIGS
def test_recreate_finetune(self, config, factory_func):
"""Imported models can be recreated via a factory function without Hugging Face transformers."""
imported = import_huggingface_model(self._get_model(config)).eval()
reloaded = factory_func(aux_num_out=imported.aux.out_features)
reloaded.load_state_dict(imported.state_dict())
reloaded.eval()
self._test_recreate(imported, reloaded, config)
|