File: huggingface_intergration_test.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (223 lines) | stat: -rw-r--r-- 9,233 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import json

import torch
from parameterized import parameterized
from torchaudio.models.wav2vec2 import wav2vec2_base, wav2vec2_large, wav2vec2_large_lv60k
from torchaudio.models.wav2vec2.utils import import_huggingface_model
from torchaudio_unittest.common_utils import get_asset_path, skipIfNoModule, TorchaudioTestCase


def _load_config(*paths):
    with open(f'{get_asset_path("wav2vec2", "huggingface", *paths)}.json', "r") as file_:
        return json.load(file_)


def _name_func(testcase_func, i, param):
    return f"{testcase_func.__name__}_{i}_{param[0][1].__name__}"


# Pretrained
HF_BASE = _load_config("wav2vec2-base")
HF_LARGE = _load_config("wav2vec2-large")
HF_LARGE_LV60 = _load_config("wav2vec2-large-lv60")
HF_LARGE_XLSR_53 = _load_config("wav2vec2-large-xlsr-53")
HF_BASE_10K_VOXPOPULI = _load_config("wav2vec2-base-10k-voxpopuli")
# Finetuned
HF_BASE_960H = _load_config("wav2vec2-base-960h")
HF_LARGE_960H = _load_config("wav2vec2-large-960h")
HF_LARGE_LV60_960H = _load_config("wav2vec2-large-960h-lv60")
HF_LARGE_LV60_SELF_960H = _load_config("wav2vec2-large-960h-lv60-self")
HF_LARGE_XLSR_DE = _load_config("wav2vec2-large-xlsr-53-german")

# Config and corresponding factory functions
PRETRAIN_CONFIGS = parameterized.expand(
    [
        (HF_BASE, wav2vec2_base),
        (HF_LARGE, wav2vec2_large),
        (HF_LARGE_LV60, wav2vec2_large_lv60k),
        (HF_LARGE_XLSR_53, wav2vec2_large_lv60k),
        (HF_BASE_10K_VOXPOPULI, wav2vec2_base),
    ],
    name_func=_name_func,
)
FINETUNE_CONFIGS = parameterized.expand(
    [
        (HF_BASE_960H, wav2vec2_base),
        (HF_LARGE_960H, wav2vec2_large),
        (HF_LARGE_LV60_960H, wav2vec2_large_lv60k),
        (HF_LARGE_LV60_SELF_960H, wav2vec2_large_lv60k),
        (HF_LARGE_XLSR_DE, wav2vec2_large_lv60k),
    ],
    name_func=_name_func,
)


@skipIfNoModule("transformers")
class TestHFIntegration(TorchaudioTestCase):
    """Test the process of importing the models from Hugging Face Transformers

    Test methods in this test suite check the following things
    1. Models loaded with Hugging Face Transformers cane be imported.
    2. The same model can be recreated without Hugging Face Transformers.
    """

    def _get_model(self, config):
        # Helper function to avoid importing transformers on module scope.
        # Normally, we use `is_module_available` helper function to check if
        # the library is available, and import it on module scope if available.
        # However, somehow, once "transformers" is imported, `is_module_available`
        # starts to fail. Therefore, we defer importing "transformers" until
        # the actual tests are started.
        from transformers.models.wav2vec2 import Wav2Vec2Config, Wav2Vec2ForCTC, Wav2Vec2Model

        if config["architectures"] == ["Wav2Vec2Model"]:
            return Wav2Vec2Model(Wav2Vec2Config(**config))
        if config["architectures"] == ["Wav2Vec2ForCTC"]:
            return Wav2Vec2ForCTC(Wav2Vec2Config(**config))
        raise ValueError(f'Unexpected arch: {config["architectures"]}')

    def _test_import_pretrain(self, original, imported, config):
        # FeatureExtractor
        x = torch.randn(3, 1024)
        ref = original.feature_extractor(x).transpose(1, 2)
        hyp, _ = imported.feature_extractor(x, None)
        self.assertEqual(ref, hyp)
        # Feature projection
        x = torch.randn(3, 10, config["conv_dim"][-1])
        ref = original.feature_projection(x)[0]
        hyp = imported.encoder.feature_projection(x)
        self.assertEqual(ref, hyp)
        # Convolutional Positional Encoder
        x = torch.randn(3, 256, config["hidden_size"])
        ref = original.encoder.pos_conv_embed(x)
        hyp = imported.encoder.transformer.pos_conv_embed(x)
        self.assertEqual(ref, hyp)
        # Encoder Transformer Layer
        for original_, imported_ in zip(original.encoder.layers, imported.encoder.transformer.layers):
            b, l, e = 16, 3, config["hidden_size"]
            x = torch.randn(b, l, e)
            mask = torch.randn(b, 1, l, l)

            (ref,) = original_(x, attention_mask=mask, output_attentions=False)
            hyp = imported_(x, mask)
            self.assertEqual(ref, hyp)
        # The whole Encoder Transformer
        b, l, e = 16, 3, config["hidden_size"]
        x = torch.randn(b, l, e)
        ref = original.encoder(x).last_hidden_state
        hyp = imported.encoder.transformer(x)
        self.assertEqual(ref, hyp)

    def _test_import_finetune(self, original, imported, config):
        # Aux
        x = torch.randn(3, 10, config["hidden_size"])
        ref = original.lm_head(x)
        hyp = imported.aux(x)
        self.assertEqual(ref, hyp)
        # The whole model without mask
        x = torch.randn(3, 1024)
        ref = original(x).logits
        hyp, _ = imported(x)
        self.assertEqual(ref, hyp)
        # The whole model without mask
        batch_size, num_frames = 3, 1024
        x = torch.randn(batch_size, num_frames)
        ref = original(x).logits
        hyp, _ = imported(x)
        self.assertEqual(ref, hyp)

        # The whole model with mask
        batch_size, num_frames = 3, 1024
        x = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )
        mask = torch.arange(num_frames).expand(batch_size, num_frames) < lengths[:, None]

        ref = original(x, attention_mask=mask).logits
        hyp, output_lengths = imported(x, lengths)

        for i, l in enumerate(output_lengths):
            self.assertEqual(ref[i, :l, ...], hyp[i, :l, ...])

    @PRETRAIN_CONFIGS
    def test_import_pretrain(self, config, _):
        """wav2vec2 models from HF transformers can be imported and yields the same results"""
        original = self._get_model(config).eval()
        imported = import_huggingface_model(original).eval()
        self._test_import_pretrain(original, imported, config)

    @FINETUNE_CONFIGS
    def test_import_finetune(self, config, _):
        """wav2vec2 models from HF transformers can be imported and yields the same results"""
        original = self._get_model(config).eval()
        imported = import_huggingface_model(original).eval()
        self._test_import_pretrain(original.wav2vec2, imported, config)
        self._test_import_finetune(original, imported, config)

    def _test_recreate(self, imported, reloaded, config):
        # FeatureExtractor
        x = torch.randn(3, 1024)
        ref, _ = imported.feature_extractor(x, None)
        hyp, _ = reloaded.feature_extractor(x, None)
        self.assertEqual(ref, hyp)
        # Feature projection
        x = torch.randn(3, 10, config["conv_dim"][-1])
        ref = imported.encoder.feature_projection(x)
        hyp = reloaded.encoder.feature_projection(x)
        self.assertEqual(ref, hyp)
        # Convolutional Positional Encoder
        x = torch.randn(3, 256, config["hidden_size"])
        ref = imported.encoder.transformer.pos_conv_embed(x)
        hyp = reloaded.encoder.transformer.pos_conv_embed(x)
        self.assertEqual(ref, hyp)
        # Encoder Transformer Layer
        for imported_, reloaded_ in zip(imported.encoder.transformer.layers, reloaded.encoder.transformer.layers):
            b, l, e = 16, 3, config["hidden_size"]
            x = torch.randn(b, l, e)
            mask = torch.randn(b, 1, l, l)

            ref = imported_(x, mask)
            hyp = reloaded_(x, mask)
            self.assertEqual(ref, hyp)
        # The whole Encoder Transformer
        # TODO: Add mask pattern. Expected mask shapes and values are different.
        b, l, e = 16, 3, config["hidden_size"]
        x = torch.randn(b, l, e)
        mask = torch.randn(b, 1, l, l)
        ref = imported.encoder.transformer(x)
        hyp = reloaded.encoder.transformer(x)
        self.assertEqual(ref, hyp)
        # Aux
        if imported.aux is not None:
            x = torch.randn(3, 10, config["hidden_size"])
            ref = imported.aux(x)
            hyp = reloaded.aux(x)
            self.assertEqual(ref, hyp)
        # The whole model
        x = torch.randn(3, 1024)
        ref, _ = imported(x)
        hyp, _ = reloaded(x)
        self.assertEqual(ref, hyp)

    @PRETRAIN_CONFIGS
    def test_recreate_pretrain(self, config, factory_func):
        """Imported models can be recreated via a factory function without Hugging Face transformers."""
        imported = import_huggingface_model(self._get_model(config)).eval()
        reloaded = factory_func()
        reloaded.load_state_dict(imported.state_dict())
        reloaded.eval()
        self._test_recreate(imported, reloaded, config)

    @FINETUNE_CONFIGS
    def test_recreate_finetune(self, config, factory_func):
        """Imported models can be recreated via a factory function without Hugging Face transformers."""
        imported = import_huggingface_model(self._get_model(config)).eval()
        reloaded = factory_func(aux_num_out=imported.aux.out_features)
        reloaded.load_state_dict(imported.state_dict())
        reloaded.eval()
        self._test_recreate(imported, reloaded, config)