File: model_test.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (402 lines) | stat: -rw-r--r-- 13,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import math
import os
from typing import Tuple

import torch
import torch.nn.functional as F
from parameterized import parameterized
from torchaudio.models.wav2vec2 import (
    hubert_base,
    hubert_large,
    hubert_pretrain_base,
    hubert_pretrain_large,
    hubert_pretrain_xlarge,
    hubert_xlarge,
    wav2vec2_base,
    wav2vec2_large,
    wav2vec2_large_lv60k,
)
from torchaudio_unittest.common_utils import skipIfNoCuda, skipIfNoQengine, torch_script, TorchaudioTestCase

TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
if TORCH_VERSION >= (1, 10):
    import torch.ao.quantization as tq
else:
    import torch.quantization as tq


def _name_func(testcase_func, i, param):
    return f"{testcase_func.__name__}_{i}_{param[0][0].__name__}"


factory_funcs = parameterized.expand(
    [
        (wav2vec2_base,),
        (wav2vec2_large,),
        (wav2vec2_large_lv60k,),
        (hubert_base,),
        (hubert_large,),
        (hubert_xlarge,),
    ],
    name_func=_name_func,
)

factory_funcs_hubert_pretrain = parameterized.expand(
    [
        (hubert_pretrain_base,),
        (hubert_pretrain_large,),
        (hubert_pretrain_xlarge,),
    ],
    name_func=_name_func,
)


class TestWav2Vec2Model(TorchaudioTestCase):
    def _smoke_test(self, model, device, dtype):
        model = model.to(device=device, dtype=dtype)
        model = model.eval()

        batch_size, num_frames = 3, 1024

        waveforms = torch.randn(batch_size, num_frames, device=device, dtype=dtype)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
            device=device,
        )

        model(waveforms, lengths)

    @parameterized.expand([(torch.float32,), (torch.float64,)])
    def test_cpu_smoke_test(self, dtype):
        model = wav2vec2_base()
        self._smoke_test(model, torch.device("cpu"), dtype)
        model = wav2vec2_base(aux_num_out=32)
        self._smoke_test(model, torch.device("cpu"), dtype)

    @parameterized.expand([(torch.float32,), (torch.float64,)])
    @skipIfNoCuda
    def test_cuda_smoke_test(self, dtype):
        model = wav2vec2_base()
        self._smoke_test(model, torch.device("cuda"), dtype)
        model = wav2vec2_base(aux_num_out=32)
        self._smoke_test(model, torch.device("cuda"), dtype)

    def _feature_extractor_test(self, model):
        batch_size, num_frames = 3, 1024

        model.eval()
        num_layers = len(model.encoder.transformer.layers)

        waveforms = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )

        # Not providing num_layers returns all the intermediate features from
        # tranformer layers
        all_features, lengths_ = model.extract_features(waveforms, lengths, num_layers=None)
        assert len(all_features) == num_layers
        for features in all_features:
            assert features.ndim == 3
            assert features.shape[0] == batch_size
        assert lengths_.shape == torch.Size([batch_size])

        # Limiting the number of layers to `l`.
        for l in range(1, num_layers + 1):
            features, lengths_ = model.extract_features(waveforms, lengths, num_layers=l)
            assert len(features) == l
            for i in range(l):
                self.assertEqual(all_features[i], features[i])
            assert lengths_.shape == torch.Size([batch_size])

    @factory_funcs
    def test_extract_feature(self, factory_func):
        """`extract_features` method does not fail"""
        self._feature_extractor_test(factory_func(aux_num_out=32))

    def _test_batch_consistency(self, model):
        model.eval()
        batch_size, max_frames = 5, 5 * 1024
        waveforms = torch.randn(batch_size, max_frames)
        input_lengths = torch.tensor([i * 3200 for i in range(1, 6)])

        # Batch process with lengths
        batch_logits, output_lengths = model(waveforms, input_lengths)
        for i in range(batch_size):
            # Par-sample process without feeding length
            single_logit, _ = model(waveforms[i : i + 1, : input_lengths[i]], None)
            batch_logit = batch_logits[i : i + 1, : output_lengths[i]]

            # Convert to probability so that it's easier to interpretate the diff
            single_prob = F.softmax(single_logit, dim=2)
            batch_prob = F.softmax(batch_logit, dim=2)
            # We allow max atol=0.005 -> 0.5%
            self.assertEqual(single_prob, batch_prob, atol=0.005, rtol=0)

    @factory_funcs
    def test_pretrain_batch_consistency(self, factory_func):
        """Results from single process and batched process should be reasonably close"""
        self._test_batch_consistency(factory_func())

    @factory_funcs
    def test_finetune_batch_consistency(self, factory_func):
        """Results from single process and batched process should be reasonably close"""
        self._test_batch_consistency(factory_func(aux_num_out=32))

    def _test_zero_length(self, model):
        model.eval()
        batch_size = 3
        waveforms = torch.randn(batch_size, 1024)
        input_lengths = torch.zeros(batch_size)
        _, output_lengths = model(waveforms, input_lengths)
        self.assertEqual(torch.zeros_like(output_lengths), output_lengths)
        _, output_lengths = model.extract_features(waveforms, input_lengths)
        self.assertEqual(torch.zeros_like(output_lengths), output_lengths)

    @factory_funcs
    def test_pretrain_zero_length(self, factory_func):
        """Passing zero length should not fail"""
        self._test_zero_length(factory_func())

    @factory_funcs
    def test_finetune_zero_length(self, factory_func):
        """Passing zero length should not fail"""
        self._test_zero_length(factory_func(aux_num_out=32))

    def _test_torchscript(self, model):
        model.eval()

        batch_size, num_frames = 3, 1024

        waveforms = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )

        ref_out, ref_len = model(waveforms, lengths)

        scripted = torch_script(model)

        hyp_out, hyp_len = scripted(waveforms, lengths)

        self.assertEqual(hyp_out, ref_out)
        self.assertEqual(hyp_len, ref_len)

    @factory_funcs
    def test_pretrain_torchscript(self, factory_func):
        """Wav2Vec2Model should be scriptable"""
        if factory_func is hubert_xlarge and os.environ.get("CI") == "true":
            self.skipTest(
                "hubert_xlarge is known to fail on CI. " "See https://github.com/pytorch/pytorch/issues/65776"
            )
        self._test_torchscript(factory_func())

    @factory_funcs
    def test_finetune_torchscript(self, factory_func):
        """Wav2Vec2Model should be scriptable"""
        if factory_func is hubert_xlarge and os.environ.get("CI") == "true":
            self.skipTest(
                "hubert_xlarge is known to fail on CI. " "See https://github.com/pytorch/pytorch/issues/65776"
            )
        self._test_torchscript(factory_func(aux_num_out=32))

    def _test_quantize_smoke_test(self, model):
        model.eval()
        batch_size, num_frames = 3, 1024

        # Remove the weight normalization forward hook
        model.encoder.transformer.pos_conv_embed.__prepare_scriptable__()
        quantized = tq.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)

        # A lazy way to check that Modules are different
        assert str(quantized) != str(model), "Dynamic quantization did not modify the module."

        waveforms = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )

        _, _ = quantized(waveforms, lengths)

    @factory_funcs
    @skipIfNoQengine
    def test_quantize(self, factory_func):
        """Wav2Vec2Model should support basic quantization"""
        self._test_quantize_smoke_test(factory_func(aux_num_out=32))

    def _test_quantize_torchscript(self, model):
        model.eval()

        batch_size, num_frames = 3, 1024

        # Remove the weight normalization forward hook
        model.encoder.transformer.pos_conv_embed.__prepare_scriptable__()
        quantized = tq.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)

        # A lazy way to check that Modules are different
        assert str(quantized) != str(model), "Dynamic quantization did not modify the module."

        waveforms = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )

        ref_out, ref_len = quantized(waveforms, lengths)

        # Script
        scripted = torch_script(quantized)

        hyp_out, hyp_len = scripted(waveforms, lengths)

        self.assertEqual(hyp_out, ref_out)
        self.assertEqual(hyp_len, ref_len)

    @factory_funcs
    @skipIfNoQengine
    def test_quantize_torchscript(self, factory_func):
        """Quantized Wav2Vec2Model should be scriptable"""
        self._test_quantize_torchscript(factory_func(aux_num_out=32))


def _compute_label_frame(audio_frame: int) -> int:
    """Compute number of frames in the label tensor based on
    the number of frames in the audio tensor."""
    kernel_size = 25
    stride = 20
    sample_rate = 16  # 16 per millisecond
    label_frame = math.floor((audio_frame - kernel_size * sample_rate) / (stride * sample_rate)) + 1
    return label_frame


class TestHuBERTPretrainModel(TorchaudioTestCase):
    def _smoke_test(self, model, device, dtype):
        model = model.to(device=device, dtype=dtype)
        model = model.eval()

        batch_size, num_frames = 3, 1024

        waveforms = torch.randn(batch_size, num_frames, device=device, dtype=dtype)
        labels = torch.randint(
            low=0,
            high=100,
            size=[
                batch_size,
                _compute_label_frame(num_frames),
            ],
            device=device,
        )
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
            device=device,
        )

        model(waveforms, labels, lengths)

    @parameterized.expand([(torch.float32,), (torch.float64,)])
    def test_cpu_smoke_test(self, dtype):
        model = hubert_pretrain_base()
        self._smoke_test(model, torch.device("cpu"), dtype)

    @parameterized.expand([(torch.float32,), (torch.float64,)])
    @skipIfNoCuda
    def test_cuda_smoke_test(self, dtype):
        model = hubert_pretrain_base()
        self._smoke_test(model, torch.device("cuda"), dtype)

    def _feature_extractor_test(self, model):
        batch_size, num_frames = 3, 1024

        model = model.wav2vec2
        model.eval()
        num_layers = len(model.encoder.transformer.layers)

        waveforms = torch.randn(batch_size, num_frames)
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )

        # Not providing num_layers returns all the intermediate features from
        # tranformer layers
        all_features, lengths_ = model.extract_features(waveforms, lengths, num_layers=None)
        assert len(all_features) == num_layers
        for features in all_features:
            assert features.ndim == 3
            assert features.shape[0] == batch_size
        assert lengths_.shape == torch.Size([batch_size])

        # Limiting the number of layers to `l`.
        for l in range(1, num_layers + 1):
            features, lengths_ = model.extract_features(waveforms, lengths, num_layers=l)
            assert len(features) == l
            for i in range(l):
                self.assertEqual(all_features[i], features[i])
            assert lengths_.shape == torch.Size([batch_size])

    @factory_funcs_hubert_pretrain
    def test_extract_feature(self, factory_func):
        """`extract_features` method does not fail"""
        self._feature_extractor_test(factory_func())

    def _test_quantize_smoke_test(self, model):
        model.eval()
        batch_size, num_frames = 3, 1024

        # Remove the weight normalization forward hook
        model.wav2vec2.encoder.transformer.pos_conv_embed.__prepare_scriptable__()
        quantized = tq.quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)

        # A lazy way to check that Modules are different
        assert str(quantized) != str(model), "Dynamic quantization did not modify the module."

        waveforms = torch.randn(batch_size, num_frames)
        labels = torch.randint(
            low=0,
            high=100,
            size=[
                batch_size,
                _compute_label_frame(num_frames),
            ],
        )
        lengths = torch.randint(
            low=0,
            high=num_frames,
            size=[
                batch_size,
            ],
        )

        _, _, _ = quantized(waveforms, labels, lengths)

    @factory_funcs_hubert_pretrain
    @skipIfNoQengine
    def test_quantize(self, factory_func):
        """HuBERTPretrainModel should support basic quantization"""
        self._test_quantize_smoke_test(factory_func())