1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
"""Test numerical consistency among single input and batched input."""
import os
import torch
from parameterized import parameterized
from torchaudio import transforms as T
from torchaudio_unittest import common_utils
class TestTransforms(common_utils.TorchaudioTestCase):
"""Test suite for classes defined in `transforms` module"""
backend = "default"
def assert_batch_consistency(self, transform, batch, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs):
n = batch.size(0)
# Compute items separately, then batch the result
torch.random.manual_seed(seed)
items_input = batch.clone()
items_result = torch.stack([transform(items_input[i], *args, **kwargs) for i in range(n)])
# Batch the input and run
torch.random.manual_seed(seed)
batch_input = batch.clone()
batch_result = transform(batch_input, *args, **kwargs)
self.assertEqual(items_input, batch_input, rtol=rtol, atol=atol)
self.assertEqual(items_result, batch_result, rtol=rtol, atol=atol)
def test_batch_AmplitudeToDB(self):
spec = torch.rand((3, 2, 6, 201))
transform = T.AmplitudeToDB()
self.assert_batch_consistency(transform, spec)
def test_batch_Resample(self):
waveform = torch.randn(3, 2, 2786)
transform = T.Resample()
self.assert_batch_consistency(transform, waveform)
def test_batch_MelScale(self):
specgram = torch.randn(3, 2, 201, 256)
atol = 1e-6 if os.name == "nt" else 1e-8
transform = T.MelScale()
self.assert_batch_consistency(transform, specgram, atol=atol)
def test_batch_InverseMelScale(self):
n_mels = 32
n_stft = 5
mel_spec = torch.randn(3, 2, n_mels, 32) ** 2
transform = T.InverseMelScale(n_stft, n_mels)
# Because InverseMelScale runs SGD on randomly initialized values so they do not yield
# exactly same result. For this reason, tolerance is very relaxed here.
self.assert_batch_consistency(transform, mel_spec, atol=1.0, rtol=1e-5)
def test_batch_compute_deltas(self):
specgram = torch.randn(3, 2, 31, 2786)
transform = T.ComputeDeltas()
self.assert_batch_consistency(transform, specgram)
def test_batch_mulaw(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
# Single then transform then batch
expected = [T.MuLawEncoding()(waveform[i]) for i in range(3)]
expected = torch.stack(expected)
# Batch then transform
computed = T.MuLawEncoding()(waveform)
# shape = (3, 2, 201, 1394)
self.assertEqual(computed, expected)
# Single then transform then batch
expected_decoded = [T.MuLawDecoding()(expected[i]) for i in range(3)]
expected_decoded = torch.stack(expected_decoded)
# Batch then transform
computed_decoded = T.MuLawDecoding()(computed)
# shape = (3, 2, 201, 1394)
self.assertEqual(computed_decoded, expected_decoded)
def test_batch_spectrogram(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.Spectrogram()
self.assert_batch_consistency(transform, waveform)
def test_batch_inverse_spectrogram(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
specgram = common_utils.get_spectrogram(waveform, n_fft=400)
specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
transform = T.InverseSpectrogram(n_fft=400)
self.assert_batch_consistency(transform, specgram)
def test_batch_melspectrogram(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.MelSpectrogram()
self.assert_batch_consistency(transform, waveform)
def test_batch_mfcc(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.MFCC()
self.assert_batch_consistency(transform, waveform, atol=1e-4, rtol=1e-5)
def test_batch_lfcc(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.LFCC()
self.assert_batch_consistency(transform, waveform, atol=1e-4, rtol=1e-5)
def test_batch_TimeStretch(self):
rate = 2
num_freq = 1025
batch = 3
tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=batch)
spec = common_utils.get_spectrogram(tensor, n_fft=num_freq)
transform = T.TimeStretch(fixed_rate=rate, n_freq=num_freq // 2 + 1, hop_length=512)
self.assert_batch_consistency(transform, spec, atol=1e-5, rtol=1e-5)
def test_batch_Fade(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
fade_in_len = 3000
fade_out_len = 3000
transform = T.Fade(fade_in_len, fade_out_len)
self.assert_batch_consistency(transform, waveform)
def test_batch_Vol(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.Vol(gain=1.1)
self.assert_batch_consistency(transform, waveform)
def test_batch_spectral_centroid(self):
sample_rate = 44100
waveform = common_utils.get_whitenoise(sample_rate=sample_rate, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.SpectralCentroid(sample_rate)
self.assert_batch_consistency(transform, waveform)
def test_batch_pitch_shift(self):
sample_rate = 8000
n_steps = -2
waveform = common_utils.get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=6)
waveform = waveform.reshape(3, 2, -1)
transform = T.PitchShift(sample_rate, n_steps, n_fft=400)
self.assert_batch_consistency(transform, waveform)
def test_batch_PSD(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
specgram = common_utils.get_spectrogram(waveform, n_fft=400)
specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
transform = T.PSD()
self.assert_batch_consistency(transform, specgram)
def test_batch_PSD_with_mask(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
waveform = waveform.to(torch.double)
specgram = common_utils.get_spectrogram(waveform, n_fft=400)
specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
mask = torch.rand((3, specgram.shape[-2], specgram.shape[-1]))
transform = T.PSD()
# Single then transform then batch
expected = [transform(specgram[i], mask[i]) for i in range(3)]
expected = torch.stack(expected)
# Batch then transform
computed = transform(specgram, mask)
self.assertEqual(computed, expected)
@parameterized.expand(
[
[True],
[False],
]
)
def test_MVDR(self, multi_mask):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
specgram = common_utils.get_spectrogram(waveform, n_fft=400)
specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
if multi_mask:
mask_s = torch.rand((3, 2, specgram.shape[-2], specgram.shape[-1]))
mask_n = torch.rand((3, 2, specgram.shape[-2], specgram.shape[-1]))
else:
mask_s = torch.rand((3, specgram.shape[-2], specgram.shape[-1]))
mask_n = torch.rand((3, specgram.shape[-2], specgram.shape[-1]))
transform = T.MVDR(multi_mask=multi_mask)
# Single then transform then batch
expected = [transform(specgram[i], mask_s[i], mask_n[i]) for i in range(3)]
expected = torch.stack(expected)
# Batch then transform
computed = transform(specgram, mask_s, mask_n)
self.assertEqual(computed, expected)
def test_rtf_mvdr(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
specgram = common_utils.get_spectrogram(waveform, n_fft=400)
batch_size, channel, freq, time = 3, 2, specgram.shape[-2], specgram.shape[-1]
specgram = specgram.reshape(batch_size, channel, freq, time)
rtf = torch.rand(batch_size, freq, channel, dtype=torch.cfloat)
psd_n = torch.rand(batch_size, freq, channel, channel, dtype=torch.cfloat)
reference_channel = 0
transform = T.RTFMVDR()
# Single then transform then batch
expected = [transform(specgram[i], rtf[i], psd_n[i], reference_channel) for i in range(batch_size)]
expected = torch.stack(expected)
# Batch then transform
computed = transform(specgram, rtf, psd_n, reference_channel)
self.assertEqual(computed, expected)
def test_souden_mvdr(self):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
specgram = common_utils.get_spectrogram(waveform, n_fft=400)
batch_size, channel, freq, time = 3, 2, specgram.shape[-2], specgram.shape[-1]
specgram = specgram.reshape(batch_size, channel, freq, time)
psd_s = torch.rand(batch_size, freq, channel, channel, dtype=torch.cfloat)
psd_n = torch.rand(batch_size, freq, channel, channel, dtype=torch.cfloat)
reference_channel = 0
transform = T.SoudenMVDR()
# Single then transform then batch
expected = [transform(specgram[i], psd_s[i], psd_n[i], reference_channel) for i in range(batch_size)]
expected = torch.stack(expected)
# Batch then transform
computed = transform(specgram, psd_s, psd_n, reference_channel)
self.assertEqual(computed, expected)
|