File: batch_consistency_test.py

package info (click to toggle)
pytorch-audio 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,592 kB
  • sloc: python: 41,137; cpp: 8,016; sh: 3,538; makefile: 24
file content (259 lines) | stat: -rw-r--r-- 10,304 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""Test numerical consistency among single input and batched input."""
import os

import torch
from parameterized import parameterized
from torchaudio import transforms as T
from torchaudio_unittest import common_utils


class TestTransforms(common_utils.TorchaudioTestCase):
    """Test suite for classes defined in `transforms` module"""

    backend = "default"

    def assert_batch_consistency(self, transform, batch, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs):
        n = batch.size(0)

        # Compute items separately, then batch the result
        torch.random.manual_seed(seed)
        items_input = batch.clone()
        items_result = torch.stack([transform(items_input[i], *args, **kwargs) for i in range(n)])

        # Batch the input and run
        torch.random.manual_seed(seed)
        batch_input = batch.clone()
        batch_result = transform(batch_input, *args, **kwargs)

        self.assertEqual(items_input, batch_input, rtol=rtol, atol=atol)
        self.assertEqual(items_result, batch_result, rtol=rtol, atol=atol)

    def test_batch_AmplitudeToDB(self):
        spec = torch.rand((3, 2, 6, 201))
        transform = T.AmplitudeToDB()

        self.assert_batch_consistency(transform, spec)

    def test_batch_Resample(self):
        waveform = torch.randn(3, 2, 2786)
        transform = T.Resample()

        self.assert_batch_consistency(transform, waveform)

    def test_batch_MelScale(self):
        specgram = torch.randn(3, 2, 201, 256)

        atol = 1e-6 if os.name == "nt" else 1e-8
        transform = T.MelScale()

        self.assert_batch_consistency(transform, specgram, atol=atol)

    def test_batch_InverseMelScale(self):
        n_mels = 32
        n_stft = 5
        mel_spec = torch.randn(3, 2, n_mels, 32) ** 2
        transform = T.InverseMelScale(n_stft, n_mels)

        # Because InverseMelScale runs SGD on randomly initialized values so they do not yield
        # exactly same result. For this reason, tolerance is very relaxed here.
        self.assert_batch_consistency(transform, mel_spec, atol=1.0, rtol=1e-5)

    def test_batch_compute_deltas(self):
        specgram = torch.randn(3, 2, 31, 2786)
        transform = T.ComputeDeltas()

        self.assert_batch_consistency(transform, specgram)

    def test_batch_mulaw(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)

        # Single then transform then batch
        expected = [T.MuLawEncoding()(waveform[i]) for i in range(3)]
        expected = torch.stack(expected)

        # Batch then transform
        computed = T.MuLawEncoding()(waveform)

        # shape = (3, 2, 201, 1394)
        self.assertEqual(computed, expected)

        # Single then transform then batch
        expected_decoded = [T.MuLawDecoding()(expected[i]) for i in range(3)]
        expected_decoded = torch.stack(expected_decoded)

        # Batch then transform
        computed_decoded = T.MuLawDecoding()(computed)

        # shape = (3, 2, 201, 1394)
        self.assertEqual(computed_decoded, expected_decoded)

    def test_batch_spectrogram(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.Spectrogram()

        self.assert_batch_consistency(transform, waveform)

    def test_batch_inverse_spectrogram(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        specgram = common_utils.get_spectrogram(waveform, n_fft=400)
        specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
        transform = T.InverseSpectrogram(n_fft=400)

        self.assert_batch_consistency(transform, specgram)

    def test_batch_melspectrogram(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.MelSpectrogram()

        self.assert_batch_consistency(transform, waveform)

    def test_batch_mfcc(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.MFCC()

        self.assert_batch_consistency(transform, waveform, atol=1e-4, rtol=1e-5)

    def test_batch_lfcc(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.LFCC()

        self.assert_batch_consistency(transform, waveform, atol=1e-4, rtol=1e-5)

    def test_batch_TimeStretch(self):
        rate = 2
        num_freq = 1025
        batch = 3

        tensor = common_utils.get_whitenoise(sample_rate=8000, n_channels=batch)
        spec = common_utils.get_spectrogram(tensor, n_fft=num_freq)
        transform = T.TimeStretch(fixed_rate=rate, n_freq=num_freq // 2 + 1, hop_length=512)

        self.assert_batch_consistency(transform, spec, atol=1e-5, rtol=1e-5)

    def test_batch_Fade(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        fade_in_len = 3000
        fade_out_len = 3000
        transform = T.Fade(fade_in_len, fade_out_len)

        self.assert_batch_consistency(transform, waveform)

    def test_batch_Vol(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.Vol(gain=1.1)

        self.assert_batch_consistency(transform, waveform)

    def test_batch_spectral_centroid(self):
        sample_rate = 44100
        waveform = common_utils.get_whitenoise(sample_rate=sample_rate, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.SpectralCentroid(sample_rate)

        self.assert_batch_consistency(transform, waveform)

    def test_batch_pitch_shift(self):
        sample_rate = 8000
        n_steps = -2
        waveform = common_utils.get_whitenoise(sample_rate=sample_rate, duration=0.05, n_channels=6)
        waveform = waveform.reshape(3, 2, -1)
        transform = T.PitchShift(sample_rate, n_steps, n_fft=400)

        self.assert_batch_consistency(transform, waveform)

    def test_batch_PSD(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        specgram = common_utils.get_spectrogram(waveform, n_fft=400)
        specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
        transform = T.PSD()

        self.assert_batch_consistency(transform, specgram)

    def test_batch_PSD_with_mask(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        waveform = waveform.to(torch.double)
        specgram = common_utils.get_spectrogram(waveform, n_fft=400)
        specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
        mask = torch.rand((3, specgram.shape[-2], specgram.shape[-1]))
        transform = T.PSD()

        # Single then transform then batch
        expected = [transform(specgram[i], mask[i]) for i in range(3)]
        expected = torch.stack(expected)

        # Batch then transform
        computed = transform(specgram, mask)

        self.assertEqual(computed, expected)

    @parameterized.expand(
        [
            [True],
            [False],
        ]
    )
    def test_MVDR(self, multi_mask):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        specgram = common_utils.get_spectrogram(waveform, n_fft=400)
        specgram = specgram.reshape(3, 2, specgram.shape[-2], specgram.shape[-1])
        if multi_mask:
            mask_s = torch.rand((3, 2, specgram.shape[-2], specgram.shape[-1]))
            mask_n = torch.rand((3, 2, specgram.shape[-2], specgram.shape[-1]))
        else:
            mask_s = torch.rand((3, specgram.shape[-2], specgram.shape[-1]))
            mask_n = torch.rand((3, specgram.shape[-2], specgram.shape[-1]))
        transform = T.MVDR(multi_mask=multi_mask)

        # Single then transform then batch
        expected = [transform(specgram[i], mask_s[i], mask_n[i]) for i in range(3)]
        expected = torch.stack(expected)

        # Batch then transform
        computed = transform(specgram, mask_s, mask_n)

        self.assertEqual(computed, expected)

    def test_rtf_mvdr(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        specgram = common_utils.get_spectrogram(waveform, n_fft=400)
        batch_size, channel, freq, time = 3, 2, specgram.shape[-2], specgram.shape[-1]
        specgram = specgram.reshape(batch_size, channel, freq, time)
        rtf = torch.rand(batch_size, freq, channel, dtype=torch.cfloat)
        psd_n = torch.rand(batch_size, freq, channel, channel, dtype=torch.cfloat)
        reference_channel = 0
        transform = T.RTFMVDR()

        # Single then transform then batch
        expected = [transform(specgram[i], rtf[i], psd_n[i], reference_channel) for i in range(batch_size)]
        expected = torch.stack(expected)

        # Batch then transform
        computed = transform(specgram, rtf, psd_n, reference_channel)

        self.assertEqual(computed, expected)

    def test_souden_mvdr(self):
        waveform = common_utils.get_whitenoise(sample_rate=8000, duration=1, n_channels=6)
        specgram = common_utils.get_spectrogram(waveform, n_fft=400)
        batch_size, channel, freq, time = 3, 2, specgram.shape[-2], specgram.shape[-1]
        specgram = specgram.reshape(batch_size, channel, freq, time)
        psd_s = torch.rand(batch_size, freq, channel, channel, dtype=torch.cfloat)
        psd_n = torch.rand(batch_size, freq, channel, channel, dtype=torch.cfloat)
        reference_channel = 0
        transform = T.SoudenMVDR()

        # Single then transform then batch
        expected = [transform(specgram[i], psd_s[i], psd_n[i], reference_channel) for i in range(batch_size)]
        expected = torch.stack(expected)

        # Batch then transform
        computed = transform(specgram, psd_s, psd_n, reference_channel)

        self.assertEqual(computed, expected)