1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
import math
import torch
import torchaudio
import torchaudio.functional as F
import torchaudio.transforms as transforms
from torchaudio_unittest import common_utils
class Tester(common_utils.TorchaudioTestCase):
backend = "default"
# create a sinewave signal for testing
sample_rate = 16000
freq = 440
volume = 0.3
waveform = torch.cos(2 * math.pi * torch.arange(0, 4 * sample_rate).float() * freq / sample_rate)
waveform.unsqueeze_(0) # (1, 64000)
waveform = (waveform * volume * 2**31).long()
def scale(self, waveform, factor=2.0**31):
# scales a waveform by a factor
if not waveform.is_floating_point():
waveform = waveform.to(torch.get_default_dtype())
return waveform / factor
def test_mu_law_companding(self):
quantization_channels = 256
waveform = self.waveform.clone()
if not waveform.is_floating_point():
waveform = waveform.to(torch.get_default_dtype())
waveform /= torch.abs(waveform).max()
self.assertTrue(waveform.min() >= -1.0 and waveform.max() <= 1.0)
waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform)
self.assertTrue(waveform_mu.min() >= 0.0 and waveform_mu.max() <= quantization_channels)
waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu)
self.assertTrue(waveform_exp.min() >= -1.0 and waveform_exp.max() <= 1.0)
def test_AmplitudeToDB(self):
filepath = common_utils.get_asset_path("steam-train-whistle-daniel_simon.wav")
waveform = common_utils.load_wav(filepath)[0]
mag_to_db_transform = transforms.AmplitudeToDB("magnitude", 80.0)
power_to_db_transform = transforms.AmplitudeToDB("power", 80.0)
mag_to_db_torch = mag_to_db_transform(torch.abs(waveform))
power_to_db_torch = power_to_db_transform(torch.pow(waveform, 2))
self.assertEqual(mag_to_db_torch, power_to_db_torch)
def test_melscale_load_save(self):
specgram = torch.ones(1, 201, 100)
melscale_transform = transforms.MelScale()
melscale_transform(specgram)
melscale_transform_copy = transforms.MelScale()
melscale_transform_copy.load_state_dict(melscale_transform.state_dict())
fb = melscale_transform.fb
fb_copy = melscale_transform_copy.fb
self.assertEqual(fb_copy.size(), (201, 128))
self.assertEqual(fb, fb_copy)
def test_melspectrogram_load_save(self):
waveform = self.waveform.float()
mel_spectrogram_transform = transforms.MelSpectrogram()
mel_spectrogram_transform(waveform)
mel_spectrogram_transform_copy = transforms.MelSpectrogram()
mel_spectrogram_transform_copy.load_state_dict(mel_spectrogram_transform.state_dict())
window = mel_spectrogram_transform.spectrogram.window
window_copy = mel_spectrogram_transform_copy.spectrogram.window
fb = mel_spectrogram_transform.mel_scale.fb
fb_copy = mel_spectrogram_transform_copy.mel_scale.fb
self.assertEqual(window, window_copy)
# the default for n_fft = 400 and n_mels = 128
self.assertEqual(fb_copy.size(), (201, 128))
self.assertEqual(fb, fb_copy)
def test_mel2(self):
top_db = 80.0
s2db = transforms.AmplitudeToDB("power", top_db)
waveform = self.waveform.clone() # (1, 16000)
waveform_scaled = self.scale(waveform) # (1, 16000)
mel_transform = transforms.MelSpectrogram()
# check defaults
spectrogram_torch = s2db(mel_transform(waveform_scaled)) # (1, 128, 321)
self.assertTrue(spectrogram_torch.dim() == 3)
self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels)
# check correctness of filterbank conversion matrix
self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.0).all())
self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.0).all())
# check options
kwargs = {
"window_fn": torch.hamming_window,
"pad": 10,
"win_length": 500,
"hop_length": 125,
"n_fft": 800,
"n_mels": 50,
}
mel_transform2 = transforms.MelSpectrogram(**kwargs)
spectrogram2_torch = s2db(mel_transform2(waveform_scaled)) # (1, 50, 513)
self.assertTrue(spectrogram2_torch.dim() == 3)
self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels)
self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.0).all())
self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.0).all())
# check on multi-channel audio
filepath = common_utils.get_asset_path("steam-train-whistle-daniel_simon.wav")
x_stereo = common_utils.load_wav(filepath)[0] # (2, 278756), 44100
spectrogram_stereo = s2db(mel_transform(x_stereo)) # (2, 128, 1394)
self.assertTrue(spectrogram_stereo.dim() == 3)
self.assertTrue(spectrogram_stereo.size(0) == 2)
self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels)
# check filterbank matrix creation
fb_matrix_transform = transforms.MelScale(n_mels=100, sample_rate=16000, f_min=0.0, f_max=None, n_stft=400)
self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.0).all())
self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.0).all())
self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))
def test_mfcc_defaults(self):
"""Check the default configuration of the MFCC transform."""
sample_rate = 16000
audio = common_utils.get_whitenoise(sample_rate=sample_rate)
n_mfcc = 40
mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm="ortho")
torch_mfcc = mfcc_transform(audio) # (1, 40, 81)
self.assertEqual(torch_mfcc.dim(), 3)
self.assertEqual(torch_mfcc.shape[1], n_mfcc)
self.assertEqual(torch_mfcc.shape[2], 81)
def test_mfcc_kwargs_passthrough(self):
"""Check kwargs get correctly passed to the MelSpectrogram transform."""
sample_rate = 16000
audio = common_utils.get_whitenoise(sample_rate=sample_rate)
n_mfcc = 40
melkwargs = {"win_length": 200}
mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=sample_rate, n_mfcc=n_mfcc, norm="ortho", melkwargs=melkwargs
)
torch_mfcc = mfcc_transform(audio) # (1, 40, 161)
self.assertEqual(torch_mfcc.shape[2], 161)
def test_mfcc_norms(self):
"""Check if MFCC-DCT norms work correctly."""
sample_rate = 16000
audio = common_utils.get_whitenoise(sample_rate=sample_rate)
n_mfcc = 40
n_mels = 128
mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm="ortho")
# check norms work correctly
mfcc_transform_norm_none = torchaudio.transforms.MFCC(sample_rate=sample_rate, n_mfcc=n_mfcc, norm=None)
torch_mfcc_norm_none = mfcc_transform_norm_none(audio) # (1, 40, 81)
norm_check = mfcc_transform(audio)
norm_check[:, 0, :] *= math.sqrt(n_mels) * 2
norm_check[:, 1:, :] *= math.sqrt(n_mels / 2) * 2
self.assertEqual(torch_mfcc_norm_none, norm_check)
def test_lfcc_defaults(self):
"""Check default settings for LFCC transform."""
sample_rate = 16000
audio = common_utils.get_whitenoise(sample_rate=sample_rate)
n_lfcc = 40
n_filter = 128
lfcc_transform = torchaudio.transforms.LFCC(
sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm="ortho"
)
torch_lfcc = lfcc_transform(audio) # (1, 40, 81)
self.assertEqual(torch_lfcc.dim(), 3)
self.assertEqual(torch_lfcc.shape[1], n_lfcc)
self.assertEqual(torch_lfcc.shape[2], 81)
def test_lfcc_arg_passthrough(self):
"""Check if kwargs get correctly passed to the underlying Spectrogram transform."""
sample_rate = 16000
audio = common_utils.get_whitenoise(sample_rate=sample_rate)
n_lfcc = 40
n_filter = 128
speckwargs = {"win_length": 200}
lfcc_transform = torchaudio.transforms.LFCC(
sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm="ortho", speckwargs=speckwargs
)
torch_lfcc = lfcc_transform(audio) # (1, 40, 161)
self.assertEqual(torch_lfcc.shape[2], 161)
def test_lfcc_norms(self):
"""Check if LFCC-DCT norm works correctly."""
sample_rate = 16000
audio = common_utils.get_whitenoise(sample_rate=sample_rate)
n_lfcc = 40
n_filter = 128
lfcc_transform = torchaudio.transforms.LFCC(
sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm="ortho"
)
lfcc_transform_norm_none = torchaudio.transforms.LFCC(
sample_rate=sample_rate, n_filter=n_filter, n_lfcc=n_lfcc, norm=None
)
torch_lfcc_norm_none = lfcc_transform_norm_none(audio) # (1, 40, 161)
norm_check = lfcc_transform(audio) # (1, 40, 161)
norm_check[:, 0, :] *= math.sqrt(n_filter) * 2
norm_check[:, 1:, :] *= math.sqrt(n_filter / 2) * 2
self.assertEqual(torch_lfcc_norm_none, norm_check)
def test_resample_size(self):
input_path = common_utils.get_asset_path("sinewave.wav")
waveform, sample_rate = common_utils.load_wav(input_path)
upsample_rate = sample_rate * 2
downsample_rate = sample_rate // 2
invalid_resampling_method = "foo"
with self.assertRaises(ValueError):
torchaudio.transforms.Resample(sample_rate, upsample_rate, resampling_method=invalid_resampling_method)
upsample_resample = torchaudio.transforms.Resample(
sample_rate, upsample_rate, resampling_method="sinc_interpolation"
)
up_sampled = upsample_resample(waveform)
# we expect the upsampled signal to have twice as many samples
self.assertTrue(up_sampled.size(-1) == waveform.size(-1) * 2)
downsample_resample = torchaudio.transforms.Resample(
sample_rate, downsample_rate, resampling_method="sinc_interpolation"
)
down_sampled = downsample_resample(waveform)
# we expect the downsampled signal to have half as many samples
self.assertTrue(down_sampled.size(-1) == waveform.size(-1) // 2)
def test_compute_deltas(self):
channel = 13
n_mfcc = channel * 3
time = 1021
win_length = 2 * 7 + 1
specgram = torch.randn(channel, n_mfcc, time)
transform = transforms.ComputeDeltas(win_length=win_length)
computed = transform(specgram)
self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))
def test_compute_deltas_transform_same_as_functional(self, atol=1e-6, rtol=1e-8):
channel = 13
n_mfcc = channel * 3
time = 1021
win_length = 2 * 7 + 1
specgram = torch.randn(channel, n_mfcc, time)
transform = transforms.ComputeDeltas(win_length=win_length)
computed_transform = transform(specgram)
computed_functional = F.compute_deltas(specgram, win_length=win_length)
self.assertEqual(computed_functional, computed_transform, atol=atol, rtol=rtol)
def test_compute_deltas_twochannel(self):
specgram = torch.tensor([1.0, 2.0, 3.0, 4.0]).repeat(1, 2, 1)
expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5], [0.5, 1.0, 1.0, 0.5]]])
transform = transforms.ComputeDeltas(win_length=3)
computed = transform(specgram)
assert computed.shape == expected.shape, (computed.shape, expected.shape)
self.assertEqual(computed, expected, atol=1e-6, rtol=1e-8)
class SmokeTest(common_utils.TorchaudioTestCase):
def test_spectrogram(self):
specgram = transforms.Spectrogram(center=False, pad_mode="reflect", onesided=False)
self.assertEqual(specgram.center, False)
self.assertEqual(specgram.pad_mode, "reflect")
self.assertEqual(specgram.onesided, False)
def test_melspectrogram(self):
melspecgram = transforms.MelSpectrogram(center=True, pad_mode="reflect", onesided=False)
specgram = melspecgram.spectrogram
self.assertEqual(specgram.center, True)
self.assertEqual(specgram.pad_mode, "reflect")
self.assertEqual(specgram.onesided, False)
|