1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import os
import sys
import time
import torch
import torchaudio
import sentencepiece as spm
from fairseq import tasks
from fairseq.utils import load_ensemble_for_inference, import_user_module
from interactive_asr.vad import get_microphone_chunks
def add_asr_eval_argument(parser):
parser.add_argument("--input_file", help="input file")
parser.add_argument("--ctc", action="store_true", help="decode a ctc model")
parser.add_argument("--rnnt", default=False, help="decode a rnnt model")
parser.add_argument("--kspmodel", default=None, help="sentence piece model")
parser.add_argument(
"--wfstlm", default=None, help="wfstlm on dictonary output units"
)
parser.add_argument(
"--rnnt_decoding_type",
default="greedy",
help="wfstlm on dictonary output units",
)
parser.add_argument(
"--lm_weight",
default=0.2,
help="weight for wfstlm while interpolating with neural score",
)
parser.add_argument(
"--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level"
)
return parser
def check_args(args):
assert args.path is not None, "--path required for generation!"
assert (
not args.sampling or args.nbest == args.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
args.replace_unk is None or args.raw_text
), "--replace-unk requires a raw text dataset (--raw-text)"
def process_predictions(args, hypos, sp, tgt_dict):
res = []
device = torch.device("cuda:0" if torch.cuda.is_available() and not args.cpu else "cpu")
for hypo in hypos[: min(len(hypos), args.nbest)]:
hyp_pieces = tgt_dict.string(hypo["tokens"].int().to(device))
hyp_words = sp.DecodePieces(hyp_pieces.split())
res.append(hyp_words)
return res
def optimize_models(args, use_cuda, models):
"""Optimize ensemble for generation
"""
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
need_attn=args.print_alignment,
)
if args.fp16:
model.half()
if use_cuda:
model.cuda()
def calc_mean_invstddev(feature):
if len(feature.shape) != 2:
raise ValueError("We expect the input feature to be 2-D tensor")
mean = torch.mean(feature, dim=0)
var = torch.var(feature, dim=0)
# avoid division by ~zero
if (var < sys.float_info.epsilon).any():
return mean, 1.0 / (torch.sqrt(var) + sys.float_info.epsilon)
return mean, 1.0 / torch.sqrt(var)
def calcMN(features):
mean, invstddev = calc_mean_invstddev(features)
res = (features - mean) * invstddev
return res
def transcribe(waveform, args, task, generator, models, sp, tgt_dict):
num_features = 80
output = torchaudio.compliance.kaldi.fbank(waveform, num_mel_bins=num_features)
device = torch.device("cuda:0" if torch.cuda.is_available() and not args.cpu else "cpu")
output_cmvn = calcMN(output.to(device).detach())
# size (m, n)
source = output_cmvn
frames_lengths = torch.LongTensor([source.size(0)])
# size (1, m, n). In general, if source is (x, m, n), then hypos is (x, ...)
source.unsqueeze_(0)
sample = {"net_input": {"src_tokens": source, "src_lengths": frames_lengths}}
hypos = task.inference_step(generator, models, sample)
assert len(hypos) == 1
transcription = []
for i in range(len(hypos)):
# Process top predictions
hyp_words = process_predictions(args, hypos[i], sp, tgt_dict)
transcription.append(hyp_words)
return transcription
def setup_asr(args, logger):
check_args(args)
import_user_module(args)
if args.max_tokens is None and args.max_sentences is None:
args.max_tokens = 30000
logger.info(args)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
# Set dictionary
tgt_dict = task.target_dictionary
if args.ctc or args.rnnt:
tgt_dict.add_symbol("<ctc_blank>")
if args.ctc:
logger.info("| decoding a ctc model")
if args.rnnt:
logger.info("| decoding a rnnt model")
# Load ensemble
logger.info("| loading model(s) from {}".format(args.path))
models, _model_args = load_ensemble_for_inference(
args.path.split(":"),
task,
model_arg_overrides=eval(args.model_overrides), # noqa
)
optimize_models(args, use_cuda, models)
# Initialize generator
generator = task.build_generator(models, args)
sp = spm.SentencePieceProcessor()
sp.Load(os.path.join(args.data, "spm.model"))
return task, generator, models, sp, tgt_dict
def transcribe_file(args, task, generator, models, sp, tgt_dict):
path = args.input_file
if not os.path.exists(path):
raise FileNotFoundError("Audio file not found: {}".format(path))
waveform, sample_rate = torchaudio.load_wav(path)
waveform = waveform.mean(0, True)
waveform = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)(waveform)
start = time.time()
transcription = transcribe(
waveform, args, task, generator, models, sp, tgt_dict
)
transcription_time = time.time() - start
return transcription_time, transcription
def get_microphone_transcription(args, task, generator, models, sp, tgt_dict):
for (waveform, sample_rate) in get_microphone_chunks():
waveform = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)(waveform.reshape(1, -1))
transcription = transcribe(
waveform, args, task, generator, models, sp, tgt_dict
)
yield transcription
|