1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
"""
Following `a simple but efficient real-time voice activity detection algorithm
<https://www.eurasip.org/Proceedings/Eusipco/Eusipco2009/contents/papers/1569192958.pdf>`__.
There are three criteria to decide if a frame contains speech: energy, most
dominant frequency, and spectral flatness. If any two of those are higher than
a minimum plus a threshold, then the frame contains speech. In the offline
case, the list of frames is postprocessed to remove too short silence and
speech sequences. In the online case here, inertia is added before switching
from speech to silence or vice versa.
"""
from collections import deque
import numpy as np
import torch
import queue
import librosa
import pyaudio
import torchaudio
def compute_spectral_flatness(frame, epsilon=0.01):
# epsilon protects against log(0)
geometric_mean = torch.exp((frame + epsilon).log().mean(-1)) - epsilon
arithmetic_mean = frame.mean(-1)
return -10 * torch.log10(epsilon + geometric_mean / arithmetic_mean)
class VoiceActivityDetection(object):
def __init__(
self,
num_init_frames=30,
ignore_silent_count=4,
ignore_speech_count=1,
energy_prim_thresh=60,
frequency_prim_thresh=10,
spectral_flatness_prim_thresh=3,
verbose=False,
):
self.num_init_frames = num_init_frames
self.ignore_silent_count = ignore_silent_count
self.ignore_speech_count = ignore_speech_count
self.energy_prim_thresh = energy_prim_thresh
self.frequency_prim_thresh = frequency_prim_thresh
self.spectral_flatness_prim_thresh = spectral_flatness_prim_thresh
self.verbose = verbose
self.speech_mark = True
self.silence_mark = False
self.silent_count = 0
self.speech_count = 0
self.n = 0
if self.verbose:
self.energy_list = []
self.frequency_list = []
self.spectral_flatness_list = []
def iter(self, frame):
frame_fft = torch.rfft(frame, 1)
amplitudes = torchaudio.functional.complex_norm(frame_fft)
# Compute frame energy
energy = frame.pow(2).sum(-1)
# Most dominant frequency component
frequency = amplitudes.argmax()
# Spectral flatness measure
spectral_flatness = compute_spectral_flatness(amplitudes)
if self.verbose:
self.energy_list.append(energy)
self.frequency_list.append(frequency)
self.spectral_flatness_list.append(spectral_flatness)
if self.n == 0:
self.min_energy = energy
self.min_frequency = frequency
self.min_spectral_flatness = spectral_flatness
elif self.n < self.num_init_frames:
self.min_energy = min(energy, self.min_energy)
self.min_frequency = min(frequency, self.min_frequency)
self.min_spectral_flatness = min(
spectral_flatness, self.min_spectral_flatness
)
self.n += 1
# Add 1. to avoid log(0)
thresh_energy = self.energy_prim_thresh * torch.log(1.0 + self.min_energy)
thresh_frequency = self.frequency_prim_thresh
thresh_spectral_flatness = self.spectral_flatness_prim_thresh
# Check all three conditions
counter = 0
if energy - self.min_energy >= thresh_energy:
counter += 1
if frequency - self.min_frequency >= thresh_frequency:
counter += 1
if spectral_flatness - self.min_spectral_flatness >= thresh_spectral_flatness:
counter += 1
# Detection
if counter > 1:
# Speech detected
self.speech_count += 1
# Inertia against switching
if (
self.n >= self.num_init_frames
and self.speech_count <= self.ignore_speech_count
):
# Too soon to change
return self.silence_mark
else:
self.silent_count = 0
return self.speech_mark
else:
# Silence detected
self.min_energy = ((self.silent_count * self.min_energy) + energy) / (
self.silent_count + 1
)
self.silent_count += 1
# Inertia against switching
if (
self.n >= self.num_init_frames
and self.silent_count <= self.ignore_silent_count
):
# Too soon to change
return self.speech_mark
else:
self.speech_count = 0
return self.silence_mark
class MicrophoneStream(object):
"""Opens a recording stream as a generator yielding the audio chunks."""
def __init__(self, device=None, rate=22050, chunk=2205):
"""
The 22050 is the librosa default, which is what our models were
trained on. The ratio of [chunk / rate] is the amount of time between
audio samples - for example, with these defaults,
an audio fragment will be processed every tenth of a second.
"""
self._rate = rate
self._chunk = chunk
self._device = device
# Create a thread-safe buffer of audio data
self._buff = queue.Queue()
self.closed = True
def __enter__(self):
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
# format=pyaudio.paInt16,
format=pyaudio.paFloat32,
# The API currently only supports 1-channel (mono) audio
# https://goo.gl/z757pE
channels=1,
rate=self._rate,
input=True,
frames_per_buffer=self._chunk,
input_device_index=self._device,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
self.closed = False
return self
def __exit__(self, type, value, traceback):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
def _fill_buffer(self, in_data, frame_count, time_info, status_flags):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
def generator(self):
while not self.closed:
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
if chunk is None:
return
data = [chunk]
# Now consume whatever other data's still buffered.
while True:
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
except queue.Empty:
break
ans = np.fromstring(b"".join(data), dtype=np.float32)
# yield uniform-sized chunks
ans = np.split(ans, np.shape(ans)[0] / self._chunk)
# Resample the audio to 22050, librosa default
for chunk in ans:
yield librosa.core.resample(chunk, self._rate, 22050)
def get_microphone_chunks(
min_to_cumulate=5, # 0.5 seconds
max_to_cumulate=100, # 10 seconds
precumulate=5,
max_to_visualize=100,
):
vad = VoiceActivityDetection()
cumulated = []
precumulated = deque(maxlen=precumulate)
with MicrophoneStream() as stream:
audio_generator = stream.generator()
chunk_length = stream._chunk
waveform = torch.zeros(max_to_visualize * chunk_length)
for chunk in audio_generator:
# Is speech?
chunk = torch.tensor(chunk)
is_speech = vad.iter(chunk)
# Cumulate speech
if is_speech or cumulated:
cumulated.append(chunk)
else:
precumulated.append(chunk)
if (not is_speech and len(cumulated) >= min_to_cumulate) or (
len(cumulated) > max_to_cumulate
):
waveform = torch.cat(list(precumulated) + cumulated, -1)
yield (waveform * stream._rate, stream._rate)
cumulated = []
precumulated = deque(maxlen=precumulate)
|