1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
#!/usr/bin/env python3
"""Train Conv-TasNet"""
import time
import pathlib
import argparse
import torch
import torchaudio
import torchaudio.models
import conv_tasnet
from utils import dist_utils
from utils.dataset import utils as dataset_utils
_LG = dist_utils.getLogger(__name__)
def _parse_args(args):
parser = argparse.ArgumentParser(description=__doc__,)
parser.add_argument(
"--debug",
action="store_true",
help="Enable debug behavior. Each epoch will end with just one batch.")
group = parser.add_argument_group("Model Options")
group.add_argument(
"--num-speakers", required=True, type=int, help="The number of speakers."
)
group = parser.add_argument_group("Dataset Options")
group.add_argument(
"--sample-rate",
required=True,
type=int,
help="Sample rate of audio files in the given dataset.",
)
group.add_argument(
"--dataset",
default="wsj0mix",
choices=["wsj0mix"],
help='Dataset type. (default: "wsj0mix")',
)
group.add_argument(
"--dataset-dir",
required=True,
type=pathlib.Path,
help=(
"Directory where dataset is found. "
'If the dataset type is "wsj9mix", then this is the directory where '
'"cv", "tt" and "tr" subdirectories are found.'
),
)
group = parser.add_argument_group("Save Options")
group.add_argument(
"--save-dir",
required=True,
type=pathlib.Path,
help=(
"Directory where the checkpoints and logs are saved. "
"Though, only the worker 0 saves checkpoint data, "
"all the worker processes must have access to the directory."
),
)
group = parser.add_argument_group("Dataloader Options")
group.add_argument(
"--batch-size",
type=int,
help=f"Batch size. (default: 16 // world_size)",
)
group = parser.add_argument_group("Training Options")
group.add_argument(
"--epochs",
metavar="NUM_EPOCHS",
default=100,
type=int,
help="The number of epochs to train. (default: 100)",
)
group.add_argument(
"--learning-rate",
default=1e-3,
type=float,
help="Initial learning rate. (default: 1e-3)",
)
group.add_argument(
"--grad-clip",
metavar="CLIP_VALUE",
default=5.0,
type=float,
help="Gradient clip value (l2 norm). (default: 5.0)",
)
group.add_argument(
"--resume",
metavar="CHECKPOINT_PATH",
help="Previous checkpoint file from which the training is resumed.",
)
args = parser.parse_args(args)
# Delaing the default value initialization until parse_args is done because
# if `--help` is given, distributed training is not enabled.
if args.batch_size is None:
args.batch_size = 16 // torch.distributed.get_world_size()
return args
def _get_model(
num_sources,
enc_kernel_size=16,
enc_num_feats=512,
msk_kernel_size=3,
msk_num_feats=128,
msk_num_hidden_feats=512,
msk_num_layers=8,
msk_num_stacks=3,
):
model = torchaudio.models.ConvTasNet(
num_sources=num_sources,
enc_kernel_size=enc_kernel_size,
enc_num_feats=enc_num_feats,
msk_kernel_size=msk_kernel_size,
msk_num_feats=msk_num_feats,
msk_num_hidden_feats=msk_num_hidden_feats,
msk_num_layers=msk_num_layers,
msk_num_stacks=msk_num_stacks,
)
_LG.info_on_master("Model Configuration:")
_LG.info_on_master(" - N: %d", enc_num_feats)
_LG.info_on_master(" - L: %d", enc_kernel_size)
_LG.info_on_master(" - B: %d", msk_num_feats)
_LG.info_on_master(" - H: %d", msk_num_hidden_feats)
_LG.info_on_master(" - Sc: %d", msk_num_feats)
_LG.info_on_master(" - P: %d", msk_kernel_size)
_LG.info_on_master(" - X: %d", msk_num_layers)
_LG.info_on_master(" - R: %d", msk_num_stacks)
_LG.info_on_master(
" - Receptive Field: %s [samples]", model.mask_generator.receptive_field,
)
return model
def _get_dataloader(dataset_type, dataset_dir, num_speakers, sample_rate, batch_size):
train_dataset, valid_dataset, eval_dataset = dataset_utils.get_dataset(
dataset_type, dataset_dir, num_speakers, sample_rate,
)
train_collate_fn = dataset_utils.get_collate_fn(
dataset_type, mode='train', sample_rate=sample_rate, duration=4
)
test_collate_fn = dataset_utils.get_collate_fn(dataset_type, mode='test')
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
sampler=torch.utils.data.distributed.DistributedSampler(train_dataset),
collate_fn=train_collate_fn,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=batch_size,
sampler=torch.utils.data.distributed.DistributedSampler(valid_dataset),
collate_fn=test_collate_fn,
pin_memory=True,
)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=batch_size,
sampler=torch.utils.data.distributed.DistributedSampler(eval_dataset),
collate_fn=test_collate_fn,
pin_memory=True,
)
return train_loader, valid_loader, eval_loader
def _write_header(log_path, args):
rows = [
[f"# torch: {torch.__version__}", ],
[f"# torchaudio: {torchaudio.__version__}", ]
]
rows.append(["# arguments"])
for key, item in vars(args).items():
rows.append([f"# {key}: {item}"])
dist_utils.write_csv_on_master(log_path, *rows)
def train(args):
args = _parse_args(args)
_LG.info("%s", args)
args.save_dir.mkdir(parents=True, exist_ok=True)
if "sox_io" in torchaudio.list_audio_backends():
torchaudio.set_audio_backend("sox_io")
start_epoch = 1
if args.resume:
checkpoint = torch.load(args.resume)
if args.sample_rate != checkpoint["sample_rate"]:
raise ValueError(
"The provided sample rate ({args.sample_rate}) does not match "
"the sample rate from the check point ({checkpoint['sample_rate']})."
)
if args.num_speakers != checkpoint["num_speakers"]:
raise ValueError(
"The provided #of speakers ({args.num_speakers}) does not match "
"the #of speakers from the check point ({checkpoint['num_speakers']}.)"
)
start_epoch = checkpoint["epoch"]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_LG.info("Using: %s", device)
model = _get_model(num_sources=args.num_speakers)
model.to(device)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[device] if torch.cuda.is_available() else None
)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
if args.resume:
_LG.info("Loading parameters from the checkpoint...")
model.module.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
else:
dist_utils.synchronize_params(
str(args.save_dir / f"tmp.pt"), device, model, optimizer
)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode="max", factor=0.5, patience=3
)
train_loader, valid_loader, eval_loader = _get_dataloader(
args.dataset,
args.dataset_dir,
args.num_speakers,
args.sample_rate,
args.batch_size,
)
num_train_samples = len(train_loader.dataset)
num_valid_samples = len(valid_loader.dataset)
num_eval_samples = len(eval_loader.dataset)
_LG.info_on_master("Datasets:")
_LG.info_on_master(" - Train: %s", num_train_samples)
_LG.info_on_master(" - Valid: %s", num_valid_samples)
_LG.info_on_master(" - Eval: %s", num_eval_samples)
trainer = conv_tasnet.trainer.Trainer(
model,
optimizer,
train_loader,
valid_loader,
eval_loader,
args.grad_clip,
device,
debug=args.debug,
)
log_path = args.save_dir / f"log.csv"
_write_header(log_path, args)
dist_utils.write_csv_on_master(
log_path,
[
"epoch",
"learning_rate",
"valid_si_snri",
"valid_sdri",
"eval_si_snri",
"eval_sdri",
],
)
_LG.info_on_master("Running %s epochs", args.epochs)
for epoch in range(start_epoch, start_epoch + args.epochs):
_LG.info_on_master("=" * 70)
_LG.info_on_master("Epoch: %s", epoch)
_LG.info_on_master("Learning rate: %s", optimizer.param_groups[0]["lr"])
_LG.info_on_master("=" * 70)
t0 = time.monotonic()
trainer.train_one_epoch()
train_sps = num_train_samples / (time.monotonic() - t0)
_LG.info_on_master("-" * 70)
t0 = time.monotonic()
valid_metric = trainer.validate()
valid_sps = num_valid_samples / (time.monotonic() - t0)
_LG.info_on_master("Valid: %s", valid_metric)
_LG.info_on_master("-" * 70)
t0 = time.monotonic()
eval_metric = trainer.evaluate()
eval_sps = num_eval_samples / (time.monotonic() - t0)
_LG.info_on_master(" Eval: %s", eval_metric)
_LG.info_on_master("-" * 70)
_LG.info_on_master("Train: Speed: %6.2f [samples/sec]", train_sps)
_LG.info_on_master("Valid: Speed: %6.2f [samples/sec]", valid_sps)
_LG.info_on_master(" Eval: Speed: %6.2f [samples/sec]", eval_sps)
_LG.info_on_master("-" * 70)
dist_utils.write_csv_on_master(
log_path,
[
epoch,
optimizer.param_groups[0]["lr"],
valid_metric.si_snri,
valid_metric.sdri,
eval_metric.si_snri,
eval_metric.sdri,
],
)
lr_scheduler.step(valid_metric.si_snri)
save_path = args.save_dir / f"epoch_{epoch}.pt"
dist_utils.save_on_master(
save_path,
{
"model": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"num_speakers": args.num_speakers,
"sample_rate": args.sample_rate,
"epoch": epoch,
},
)
|