1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
"""Test numerical consistency among single input and batched input."""
import unittest
import itertools
from parameterized import parameterized
import torch
import torchaudio
import torchaudio.functional as F
from torchaudio_unittest import common_utils
class TestFunctional(common_utils.TorchaudioTestCase):
backend = 'default'
"""Test functions defined in `functional` module"""
def assert_batch_consistency(
self, functional, tensor, *args, batch_size=1, atol=1e-8, rtol=1e-5, seed=42, **kwargs):
# run then batch the result
torch.random.manual_seed(seed)
expected = functional(tensor.clone(), *args, **kwargs)
expected = expected.repeat([batch_size] + [1] * expected.dim())
# batch the input and run
torch.random.manual_seed(seed)
pattern = [batch_size] + [1] * tensor.dim()
computed = functional(tensor.repeat(pattern), *args, **kwargs)
self.assertEqual(computed, expected, rtol=rtol, atol=atol)
def assert_batch_consistencies(
self, functional, tensor, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs):
self.assert_batch_consistency(
functional, tensor, *args, batch_size=1, atol=atol, rtol=rtol, seed=seed, **kwargs)
self.assert_batch_consistency(
functional, tensor, *args, batch_size=3, atol=atol, rtol=rtol, seed=seed, **kwargs)
def test_griffinlim(self):
n_fft = 400
ws = 400
hop = 200
window = torch.hann_window(ws)
power = 2
normalize = False
momentum = 0.99
n_iter = 32
length = 1000
tensor = torch.rand((1, 201, 6))
self.assert_batch_consistencies(
F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0, atol=5e-5
)
@parameterized.expand(list(itertools.product(
[100, 440],
[8000, 16000, 44100],
[1, 2],
)), name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}')
def test_detect_pitch_frequency(self, frequency, sample_rate, n_channels):
waveform = common_utils.get_sinusoid(frequency=frequency, sample_rate=sample_rate,
n_channels=n_channels, duration=5)
self.assert_batch_consistencies(F.detect_pitch_frequency, waveform, sample_rate)
def test_contrast(self):
waveform = torch.rand(2, 100) - 0.5
self.assert_batch_consistencies(F.contrast, waveform, enhancement_amount=80.)
def test_dcshift(self):
waveform = torch.rand(2, 100) - 0.5
self.assert_batch_consistencies(F.dcshift, waveform, shift=0.5, limiter_gain=0.05)
def test_overdrive(self):
waveform = torch.rand(2, 100) - 0.5
self.assert_batch_consistencies(F.overdrive, waveform, gain=45, colour=30)
def test_phaser(self):
sample_rate = 44100
waveform = common_utils.get_whitenoise(
sample_rate=sample_rate, duration=5,
)
self.assert_batch_consistencies(F.phaser, waveform, sample_rate)
def test_flanger(self):
torch.random.manual_seed(40)
waveform = torch.rand(2, 100) - 0.5
sample_rate = 44100
self.assert_batch_consistencies(F.flanger, waveform, sample_rate)
def test_sliding_window_cmn(self):
waveform = torch.randn(2, 1024) - 0.5
self.assert_batch_consistencies(F.sliding_window_cmn, waveform, center=True, norm_vars=True)
self.assert_batch_consistencies(F.sliding_window_cmn, waveform, center=True, norm_vars=False)
self.assert_batch_consistencies(F.sliding_window_cmn, waveform, center=False, norm_vars=True)
self.assert_batch_consistencies(F.sliding_window_cmn, waveform, center=False, norm_vars=False)
def test_vad(self):
common_utils.set_audio_backend('default')
filepath = common_utils.get_asset_path("vad-go-mono-32000.wav")
waveform, sample_rate = torchaudio.load(filepath)
self.assert_batch_consistencies(F.vad, waveform, sample_rate=sample_rate)
class TestTransforms(common_utils.TorchaudioTestCase):
backend = 'default'
"""Test suite for classes defined in `transforms` module"""
def test_batch_AmplitudeToDB(self):
spec = torch.rand((6, 201))
# Single then transform then batch
expected = torchaudio.transforms.AmplitudeToDB()(spec).repeat(3, 1, 1)
# Batch then transform
computed = torchaudio.transforms.AmplitudeToDB()(spec.repeat(3, 1, 1))
self.assertEqual(computed, expected)
def test_batch_Resample(self):
waveform = torch.randn(2, 2786)
# Single then transform then batch
expected = torchaudio.transforms.Resample()(waveform).repeat(3, 1, 1)
# Batch then transform
computed = torchaudio.transforms.Resample()(waveform.repeat(3, 1, 1))
self.assertEqual(computed, expected)
def test_batch_MelScale(self):
specgram = torch.randn(2, 31, 2786)
# Single then transform then batch
expected = torchaudio.transforms.MelScale()(specgram).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.MelScale()(specgram.repeat(3, 1, 1, 1))
# shape = (3, 2, 201, 1394)
self.assertEqual(computed, expected)
def test_batch_InverseMelScale(self):
n_mels = 32
n_stft = 5
mel_spec = torch.randn(2, n_mels, 32) ** 2
# Single then transform then batch
expected = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.InverseMelScale(n_stft, n_mels)(mel_spec.repeat(3, 1, 1, 1))
# shape = (3, 2, n_mels, 32)
# Because InverseMelScale runs SGD on randomly initialized values so they do not yield
# exactly same result. For this reason, tolerance is very relaxed here.
self.assertEqual(computed, expected, atol=1.0, rtol=1e-5)
def test_batch_compute_deltas(self):
specgram = torch.randn(2, 31, 2786)
# Single then transform then batch
expected = torchaudio.transforms.ComputeDeltas()(specgram).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.ComputeDeltas()(specgram.repeat(3, 1, 1, 1))
# shape = (3, 2, 201, 1394)
self.assertEqual(computed, expected)
def test_batch_mulaw(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath) # (2, 278756), 44100
# Single then transform then batch
waveform_encoded = torchaudio.transforms.MuLawEncoding()(waveform)
expected = waveform_encoded.unsqueeze(0).repeat(3, 1, 1)
# Batch then transform
waveform_batched = waveform.unsqueeze(0).repeat(3, 1, 1)
computed = torchaudio.transforms.MuLawEncoding()(waveform_batched)
# shape = (3, 2, 201, 1394)
self.assertEqual(computed, expected)
# Single then transform then batch
waveform_decoded = torchaudio.transforms.MuLawDecoding()(waveform_encoded)
expected = waveform_decoded.unsqueeze(0).repeat(3, 1, 1)
# Batch then transform
computed = torchaudio.transforms.MuLawDecoding()(computed)
# shape = (3, 2, 201, 1394)
self.assertEqual(computed, expected)
def test_batch_spectrogram(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath) # (2, 278756), 44100
# Single then transform then batch
expected = torchaudio.transforms.Spectrogram()(waveform).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.Spectrogram()(waveform.repeat(3, 1, 1))
self.assertEqual(computed, expected)
def test_batch_melspectrogram(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath) # (2, 278756), 44100
# Single then transform then batch
expected = torchaudio.transforms.MelSpectrogram()(waveform).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.MelSpectrogram()(waveform.repeat(3, 1, 1))
self.assertEqual(computed, expected)
def test_batch_mfcc(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath)
# Single then transform then batch
expected = torchaudio.transforms.MFCC()(waveform).repeat(3, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.MFCC()(waveform.repeat(3, 1, 1))
self.assertEqual(computed, expected, atol=1e-4, rtol=1e-5)
def test_batch_TimeStretch(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath) # (2, 278756), 44100
kwargs = {
'n_fft': 2048,
'hop_length': 512,
'win_length': 2048,
'window': torch.hann_window(2048),
'center': True,
'pad_mode': 'reflect',
'normalized': True,
'onesided': True,
}
rate = 2
complex_specgrams = torch.stft(waveform, **kwargs)
# Single then transform then batch
expected = torchaudio.transforms.TimeStretch(
fixed_rate=rate,
n_freq=1025,
hop_length=512,
)(complex_specgrams).repeat(3, 1, 1, 1, 1)
# Batch then transform
computed = torchaudio.transforms.TimeStretch(
fixed_rate=rate,
n_freq=1025,
hop_length=512,
)(complex_specgrams.repeat(3, 1, 1, 1, 1))
self.assertEqual(computed, expected, atol=1e-5, rtol=1e-5)
def test_batch_Fade(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath) # (2, 278756), 44100
fade_in_len = 3000
fade_out_len = 3000
# Single then transform then batch
expected = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform).repeat(3, 1, 1)
# Batch then transform
computed = torchaudio.transforms.Fade(fade_in_len, fade_out_len)(waveform.repeat(3, 1, 1))
self.assertEqual(computed, expected)
def test_batch_Vol(self):
test_filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
waveform, _ = torchaudio.load(test_filepath) # (2, 278756), 44100
# Single then transform then batch
expected = torchaudio.transforms.Vol(gain=1.1)(waveform).repeat(3, 1, 1)
# Batch then transform
computed = torchaudio.transforms.Vol(gain=1.1)(waveform.repeat(3, 1, 1))
self.assertEqual(computed, expected)
|