1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
import csv
import os
from torchaudio.datasets import ljspeech
from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
get_whitenoise,
normalize_wav,
save_wav,
)
class TestLJSpeech(TempDirMixin, TorchaudioTestCase):
backend = "default"
root_dir = None
data = []
transcripts = [
"Test transcript 1",
"Test transcript 2",
"Test transcript 3",
"In 1465 Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome,"
]
normalized_transcripts = [
"Test transcript one",
"Test transcript two",
"Test transcript three",
"In fourteen sixty-five Sweynheim and Pannartz began printing in the monastery of Subiaco near Rome,"
]
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
base_dir = os.path.join(cls.root_dir, "LJSpeech-1.1")
archive_dir = os.path.join(base_dir, "wavs")
os.makedirs(archive_dir, exist_ok=True)
metadata_path = os.path.join(base_dir, "metadata.csv")
sample_rate = 22050
with open(metadata_path, mode="w", newline='') as metadata_file:
metadata_writer = csv.writer(
metadata_file, delimiter="|", quoting=csv.QUOTE_NONE
)
for i, (transcript, normalized_transcript) in enumerate(
zip(cls.transcripts, cls.normalized_transcripts)
):
fileid = f'LJ001-{i:04d}'
metadata_writer.writerow([fileid, transcript, normalized_transcript])
filename = fileid + ".wav"
path = os.path.join(archive_dir, filename)
data = get_whitenoise(
sample_rate=sample_rate, duration=1, n_channels=1, dtype="int16", seed=i
)
save_wav(path, data, sample_rate)
cls.data.append(normalize_wav(data))
def test_ljspeech(self):
dataset = ljspeech.LJSPEECH(self.root_dir)
n_ite = 0
for i, (waveform, sample_rate, transcript, normalized_transcript) in enumerate(
dataset
):
expected_transcript = self.transcripts[i]
expected_normalized_transcript = self.normalized_transcripts[i]
expected_data = self.data[i]
self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8)
assert sample_rate == sample_rate
assert transcript == expected_transcript
assert normalized_transcript == expected_normalized_transcript
n_ite += 1
assert n_ite == len(self.data)
|