1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
import math
import unittest
import torch
import torchaudio
import torchaudio.functional as F
from parameterized import parameterized
import pytest
from torchaudio_unittest import common_utils
from .functional_impl import Lfilter
class TestLFilterFloat32(Lfilter, common_utils.PytorchTestCase):
dtype = torch.float32
device = torch.device('cpu')
class TestLFilterFloat64(Lfilter, common_utils.PytorchTestCase):
dtype = torch.float64
device = torch.device('cpu')
class TestCreateFBMatrix(common_utils.TorchaudioTestCase):
def test_no_warning_high_n_freq(self):
with pytest.warns(None) as w:
F.create_fb_matrix(288, 0, 8000, 128, 16000)
assert len(w) == 0
def test_no_warning_low_n_mels(self):
with pytest.warns(None) as w:
F.create_fb_matrix(201, 0, 8000, 89, 16000)
assert len(w) == 0
def test_warning(self):
with pytest.warns(None) as w:
F.create_fb_matrix(201, 0, 8000, 128, 16000)
assert len(w) == 1
class TestComputeDeltas(common_utils.TorchaudioTestCase):
"""Test suite for correctness of compute_deltas"""
def test_one_channel(self):
specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0]]])
expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5]]])
computed = F.compute_deltas(specgram, win_length=3)
torch.testing.assert_allclose(computed, expected)
def test_two_channels(self):
specgram = torch.tensor([[[1.0, 2.0, 3.0, 4.0],
[1.0, 2.0, 3.0, 4.0]]])
expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
[0.5, 1.0, 1.0, 0.5]]])
computed = F.compute_deltas(specgram, win_length=3)
torch.testing.assert_allclose(computed, expected)
class TestDetectPitchFrequency(common_utils.TorchaudioTestCase):
@parameterized.expand([(100,), (440,)])
def test_pitch(self, frequency):
sample_rate = 44100
test_sine_waveform = common_utils.get_sinusoid(
frequency=frequency, sample_rate=sample_rate, duration=5,
)
freq = torchaudio.functional.detect_pitch_frequency(test_sine_waveform, sample_rate)
threshold = 1
s = ((freq - frequency).abs() > threshold).sum()
self.assertFalse(s)
class TestDB_to_amplitude(common_utils.TorchaudioTestCase):
def test_DB_to_amplitude(self):
# Make some noise
x = torch.rand(1000)
spectrogram = torchaudio.transforms.Spectrogram()
spec = spectrogram(x)
amin = 1e-10
ref = 1.0
db_multiplier = math.log10(max(amin, ref))
# Waveform amplitude -> DB -> amplitude
multiplier = 20.
power = 0.5
db = F.amplitude_to_DB(torch.abs(x), multiplier, amin, db_multiplier, top_db=None)
x2 = F.DB_to_amplitude(db, ref, power)
torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
# Spectrogram amplitude -> DB -> amplitude
db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
x2 = F.DB_to_amplitude(db, ref, power)
torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
# Waveform power -> DB -> power
multiplier = 10.
power = 1.
db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
x2 = F.DB_to_amplitude(db, ref, power)
torch.testing.assert_allclose(x2, torch.abs(x), atol=5e-5, rtol=1e-5)
# Spectrogram power -> DB -> power
db = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db=None)
x2 = F.DB_to_amplitude(db, ref, power)
torch.testing.assert_allclose(x2, spec, atol=5e-5, rtol=1e-5)
@pytest.mark.parametrize('complex_tensor', [
torch.randn(1, 2, 1025, 400, 2),
torch.randn(1025, 400, 2)
])
@pytest.mark.parametrize('power', [1, 2, 0.7])
def test_complex_norm(complex_tensor, power):
expected_norm_tensor = complex_tensor.pow(2).sum(-1).pow(power / 2)
norm_tensor = F.complex_norm(complex_tensor, power)
torch.testing.assert_allclose(norm_tensor, expected_norm_tensor, atol=1e-5, rtol=1e-5)
@pytest.mark.parametrize('specgram', [
torch.randn(2, 1025, 400),
torch.randn(1, 201, 100)
])
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [1, 2])
def test_mask_along_axis(specgram, mask_param, mask_value, axis):
mask_specgram = F.mask_along_axis(specgram, mask_param, mask_value, axis)
other_axis = 1 if axis == 2 else 2
masked_columns = (mask_specgram == mask_value).sum(other_axis)
num_masked_columns = (masked_columns == mask_specgram.size(other_axis)).sum()
num_masked_columns //= mask_specgram.size(0)
assert mask_specgram.size() == specgram.size()
assert num_masked_columns < mask_param
@pytest.mark.parametrize('mask_param', [100])
@pytest.mark.parametrize('mask_value', [0., 30.])
@pytest.mark.parametrize('axis', [2, 3])
def test_mask_along_axis_iid(mask_param, mask_value, axis):
torch.random.manual_seed(42)
specgrams = torch.randn(4, 2, 1025, 400)
mask_specgrams = F.mask_along_axis_iid(specgrams, mask_param, mask_value, axis)
other_axis = 2 if axis == 3 else 3
masked_columns = (mask_specgrams == mask_value).sum(other_axis)
num_masked_columns = (masked_columns == mask_specgrams.size(other_axis)).sum(-1)
assert mask_specgrams.size() == specgrams.size()
assert (num_masked_columns < mask_param).sum() == num_masked_columns.numel()
|