File: io_test.py

package info (click to toggle)
pytorch-audio 0.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,512 kB
  • sloc: python: 15,606; cpp: 1,352; sh: 257; makefile: 21
file content (290 lines) | stat: -rw-r--r-- 11,359 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import math
import shutil
import tempfile
import unittest

import torch
import torchaudio
from torchaudio.utils import sox_utils
from torchaudio._internal.module_utils import is_module_available

from torchaudio_unittest.common_utils import get_asset_path

BACKENDS = []
BACKENDS_MP3 = []

if is_module_available('soundfile'):
    BACKENDS.append('soundfile')

if is_module_available('torchaudio._torchaudio'):
    BACKENDS.append('sox')

    if (
            'mp3' in sox_utils.list_read_formats() and
            'mp3' in sox_utils.list_write_formats()
    ):
        BACKENDS_MP3 = ['sox']


def create_temp_assets_dir():
    """
    Creates a temporary directory and moves all files from test/assets there.
    Returns a Tuple[string, TemporaryDirectory] which is the folder path
    and object.
    """
    tmp_dir = tempfile.TemporaryDirectory()
    shutil.copytree(get_asset_path(), os.path.join(tmp_dir.name, "assets"))
    return tmp_dir.name, tmp_dir


class Test_LoadSave(unittest.TestCase):
    test_dirpath, test_dir = create_temp_assets_dir()
    test_filepath = os.path.join(test_dirpath, "assets",
                                 "steam-train-whistle-daniel_simon.mp3")
    test_filepath_wav = os.path.join(test_dirpath, "assets",
                                     "steam-train-whistle-daniel_simon.wav")

    def setUp(self):
        torchaudio.USE_SOUNDFILE_LEGACY_INTERFACE = True

    def test_1_save(self):
        for backend in BACKENDS_MP3:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_1_save(self.test_filepath, False)

        for backend in BACKENDS:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_1_save(self.test_filepath_wav, True)

    def _test_1_save(self, test_filepath, normalization):
        # load signal
        x, sr = torchaudio.load(test_filepath, normalization=normalization)

        # check save
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        torchaudio.save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # check automatic normalization
        x /= 1 << 31
        torchaudio.save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # test save 1d tensor
        x = x[0, :]  # get mono signal
        x.squeeze_()  # remove channel dim
        torchaudio.save(new_filepath, x, sr)
        self.assertTrue(os.path.isfile(new_filepath))
        os.unlink(new_filepath)

        # don't allow invalid sizes as inputs
        with self.assertRaises(ValueError):
            x.unsqueeze_(1)  # L x C not C x L
            torchaudio.save(new_filepath, x, sr)

        with self.assertRaises(ValueError):
            x.squeeze_()
            x.unsqueeze_(1)
            x.unsqueeze_(0)  # 1 x L x 1
            torchaudio.save(new_filepath, x, sr)

        # don't save to folders that don't exist
        with self.assertRaises(OSError):
            new_filepath = os.path.join(self.test_dirpath, "no-path",
                                        "test.wav")
            torchaudio.save(new_filepath, x, sr)

    def test_1_save_sine(self):
        for backend in BACKENDS:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_1_save_sine()

    def _test_1_save_sine(self):

        # save created file
        sinewave_filepath = os.path.join(self.test_dirpath, "assets",
                                         "sinewave.wav")
        sr = 16000
        freq = 440
        volume = 0.3

        y = (torch.cos(
            2 * math.pi * torch.arange(0, 4 * sr).float() * freq / sr))
        y.unsqueeze_(0)
        # y is between -1 and 1, so must scale
        y = (y * volume * (2**31)).long()
        torchaudio.save(sinewave_filepath, y, sr)
        self.assertTrue(os.path.isfile(sinewave_filepath))

        # test precision
        new_precision = 32
        new_filepath = os.path.join(self.test_dirpath, "test.wav")
        si, ei = torchaudio.info(sinewave_filepath)
        torchaudio.save(new_filepath, y, sr, new_precision)
        si32, ei32 = torchaudio.info(new_filepath)
        self.assertEqual(si.precision, 16)
        self.assertEqual(si32.precision, new_precision)
        os.unlink(new_filepath)

    def test_2_load(self):
        for backend in BACKENDS_MP3:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_2_load(self.test_filepath, 278756)

        for backend in BACKENDS:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_2_load(self.test_filepath_wav, 276858)

    def _test_2_load(self, test_filepath, length):
        # check normal loading
        x, sr = torchaudio.load(test_filepath)
        self.assertEqual(sr, 44100)
        self.assertEqual(x.size(), (2, length))

        # check offset
        offset = 15
        x, _ = torchaudio.load(test_filepath)
        x_offset, _ = torchaudio.load(test_filepath, offset=offset)
        self.assertTrue(x[:, offset:].allclose(x_offset))

        # check number of frames
        n = 201
        x, _ = torchaudio.load(test_filepath, num_frames=n)
        self.assertTrue(x.size(), (2, n))

        # check channels first
        x, _ = torchaudio.load(test_filepath, channels_first=False)
        self.assertEqual(x.size(), (length, 2))

        # check raising errors
        with self.assertRaises(OSError):
            torchaudio.load("file-does-not-exist.mp3")

        with self.assertRaises(OSError):
            tdir = os.path.join(
                os.path.dirname(self.test_dirpath), "torchaudio")
            torchaudio.load(tdir)

    def test_2_load_nonormalization(self):
        for backend in BACKENDS_MP3:
            if backend == 'sox_io':
                continue
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_2_load_nonormalization(self.test_filepath, 278756)

    def _test_2_load_nonormalization(self, test_filepath, length):

        # check no normalizing
        x, _ = torchaudio.load(test_filepath, normalization=False)
        self.assertTrue(x.min() <= -1.0)
        self.assertTrue(x.max() >= 1.0)

        # check different input tensor type
        x, _ = torchaudio.load(test_filepath, torch.LongTensor(), normalization=False)
        self.assertTrue(isinstance(x, torch.LongTensor))

    def test_3_load_and_save_is_identity(self):
        for backend in BACKENDS:
            if backend == 'sox_io':
                continue
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_3_load_and_save_is_identity()

    def _test_3_load_and_save_is_identity(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        tensor, sample_rate = torchaudio.load(input_path)
        output_path = os.path.join(self.test_dirpath, 'test.wav')
        torchaudio.save(output_path, tensor, sample_rate)
        tensor2, sample_rate2 = torchaudio.load(output_path)
        self.assertTrue(tensor.allclose(tensor2))
        self.assertEqual(sample_rate, sample_rate2)
        os.unlink(output_path)

    @unittest.skipIf(any(be not in BACKENDS for be in ["sox", "soundfile"]), "sox and soundfile are not available")
    def test_3_load_and_save_is_identity_across_backend(self):
        with self.subTest():
            self._test_3_load_and_save_is_identity_across_backend("sox", "soundfile")
        with self.subTest():
            self._test_3_load_and_save_is_identity_across_backend("soundfile", "sox")

    def _test_3_load_and_save_is_identity_across_backend(self, backend1, backend2):
        torchaudio.set_audio_backend(backend1)
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        tensor1, sample_rate1 = torchaudio.load(input_path)

        output_path = os.path.join(self.test_dirpath, 'test.wav')
        torchaudio.save(output_path, tensor1, sample_rate1)

        torchaudio.set_audio_backend(backend2)
        tensor2, sample_rate2 = torchaudio.load(output_path)

        self.assertTrue(tensor1.allclose(tensor2))
        self.assertEqual(sample_rate1, sample_rate2)
        os.unlink(output_path)

    def test_4_load_partial(self):
        for backend in BACKENDS_MP3:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_4_load_partial()

    def _test_4_load_partial(self):
        num_frames = 101
        offset = 201
        # load entire mono sinewave wav file, load a partial copy and then compare
        input_sine_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        x_sine_full, sr_sine = torchaudio.load(input_sine_path)
        x_sine_part, _ = torchaudio.load(input_sine_path, num_frames=num_frames, offset=offset)
        l1_error = x_sine_full[:, offset:(num_frames + offset)].sub(x_sine_part).abs().sum().item()
        # test for the correct number of samples and that the correct portion was loaded
        self.assertEqual(x_sine_part.size(1), num_frames)
        self.assertEqual(l1_error, 0.)
        # create a two channel version of this wavefile
        x_2ch_sine = x_sine_full.repeat(1, 2)
        out_2ch_sine_path = os.path.join(self.test_dirpath, 'assets', '2ch_sinewave.wav')
        torchaudio.save(out_2ch_sine_path, x_2ch_sine, sr_sine)
        x_2ch_sine_load, _ = torchaudio.load(out_2ch_sine_path, num_frames=num_frames, offset=offset)
        os.unlink(out_2ch_sine_path)
        l1_error = x_2ch_sine_load.sub(x_2ch_sine[:, offset:(offset + num_frames)]).abs().sum().item()
        self.assertEqual(l1_error, 0.)

        # test with two channel mp3
        x_2ch_full, sr_2ch = torchaudio.load(self.test_filepath, normalization=True)
        x_2ch_part, _ = torchaudio.load(self.test_filepath, normalization=True, num_frames=num_frames, offset=offset)
        l1_error = x_2ch_full[:, offset:(offset + num_frames)].sub(x_2ch_part).abs().sum().item()
        self.assertEqual(x_2ch_part.size(1), num_frames)
        self.assertEqual(l1_error, 0.)

        # check behavior if number of samples would exceed file length
        offset_ns = 300
        x_ns, _ = torchaudio.load(input_sine_path, num_frames=100000, offset=offset_ns)
        self.assertEqual(x_ns.size(1), x_sine_full.size(1) - offset_ns)

        # check when offset is beyond the end of the file
        with self.assertRaises(RuntimeError):
            torchaudio.load(input_sine_path, offset=100000)

    def test_5_get_info(self):
        for backend in BACKENDS:
            with self.subTest():
                torchaudio.set_audio_backend(backend)
                self._test_5_get_info()

    def _test_5_get_info(self):
        input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
        channels, samples, rate, precision = (1, 64000, 16000, 16)
        si, ei = torchaudio.info(input_path)
        self.assertEqual(si.channels, channels)
        self.assertEqual(si.length, samples)
        self.assertEqual(si.rate, rate)
        self.assertEqual(ei.bits_per_sample, precision)