1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
import os
import math
import shutil
import tempfile
import unittest
import torch
import torchaudio
from torchaudio.utils import sox_utils
from torchaudio._internal.module_utils import is_module_available
from torchaudio_unittest.common_utils import get_asset_path
BACKENDS = []
BACKENDS_MP3 = []
if is_module_available('soundfile'):
BACKENDS.append('soundfile')
if is_module_available('torchaudio._torchaudio'):
BACKENDS.append('sox')
if (
'mp3' in sox_utils.list_read_formats() and
'mp3' in sox_utils.list_write_formats()
):
BACKENDS_MP3 = ['sox']
def create_temp_assets_dir():
"""
Creates a temporary directory and moves all files from test/assets there.
Returns a Tuple[string, TemporaryDirectory] which is the folder path
and object.
"""
tmp_dir = tempfile.TemporaryDirectory()
shutil.copytree(get_asset_path(), os.path.join(tmp_dir.name, "assets"))
return tmp_dir.name, tmp_dir
class Test_LoadSave(unittest.TestCase):
test_dirpath, test_dir = create_temp_assets_dir()
test_filepath = os.path.join(test_dirpath, "assets",
"steam-train-whistle-daniel_simon.mp3")
test_filepath_wav = os.path.join(test_dirpath, "assets",
"steam-train-whistle-daniel_simon.wav")
def setUp(self):
torchaudio.USE_SOUNDFILE_LEGACY_INTERFACE = True
def test_1_save(self):
for backend in BACKENDS_MP3:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_1_save(self.test_filepath, False)
for backend in BACKENDS:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_1_save(self.test_filepath_wav, True)
def _test_1_save(self, test_filepath, normalization):
# load signal
x, sr = torchaudio.load(test_filepath, normalization=normalization)
# check save
new_filepath = os.path.join(self.test_dirpath, "test.wav")
torchaudio.save(new_filepath, x, sr)
self.assertTrue(os.path.isfile(new_filepath))
os.unlink(new_filepath)
# check automatic normalization
x /= 1 << 31
torchaudio.save(new_filepath, x, sr)
self.assertTrue(os.path.isfile(new_filepath))
os.unlink(new_filepath)
# test save 1d tensor
x = x[0, :] # get mono signal
x.squeeze_() # remove channel dim
torchaudio.save(new_filepath, x, sr)
self.assertTrue(os.path.isfile(new_filepath))
os.unlink(new_filepath)
# don't allow invalid sizes as inputs
with self.assertRaises(ValueError):
x.unsqueeze_(1) # L x C not C x L
torchaudio.save(new_filepath, x, sr)
with self.assertRaises(ValueError):
x.squeeze_()
x.unsqueeze_(1)
x.unsqueeze_(0) # 1 x L x 1
torchaudio.save(new_filepath, x, sr)
# don't save to folders that don't exist
with self.assertRaises(OSError):
new_filepath = os.path.join(self.test_dirpath, "no-path",
"test.wav")
torchaudio.save(new_filepath, x, sr)
def test_1_save_sine(self):
for backend in BACKENDS:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_1_save_sine()
def _test_1_save_sine(self):
# save created file
sinewave_filepath = os.path.join(self.test_dirpath, "assets",
"sinewave.wav")
sr = 16000
freq = 440
volume = 0.3
y = (torch.cos(
2 * math.pi * torch.arange(0, 4 * sr).float() * freq / sr))
y.unsqueeze_(0)
# y is between -1 and 1, so must scale
y = (y * volume * (2**31)).long()
torchaudio.save(sinewave_filepath, y, sr)
self.assertTrue(os.path.isfile(sinewave_filepath))
# test precision
new_precision = 32
new_filepath = os.path.join(self.test_dirpath, "test.wav")
si, ei = torchaudio.info(sinewave_filepath)
torchaudio.save(new_filepath, y, sr, new_precision)
si32, ei32 = torchaudio.info(new_filepath)
self.assertEqual(si.precision, 16)
self.assertEqual(si32.precision, new_precision)
os.unlink(new_filepath)
def test_2_load(self):
for backend in BACKENDS_MP3:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_2_load(self.test_filepath, 278756)
for backend in BACKENDS:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_2_load(self.test_filepath_wav, 276858)
def _test_2_load(self, test_filepath, length):
# check normal loading
x, sr = torchaudio.load(test_filepath)
self.assertEqual(sr, 44100)
self.assertEqual(x.size(), (2, length))
# check offset
offset = 15
x, _ = torchaudio.load(test_filepath)
x_offset, _ = torchaudio.load(test_filepath, offset=offset)
self.assertTrue(x[:, offset:].allclose(x_offset))
# check number of frames
n = 201
x, _ = torchaudio.load(test_filepath, num_frames=n)
self.assertTrue(x.size(), (2, n))
# check channels first
x, _ = torchaudio.load(test_filepath, channels_first=False)
self.assertEqual(x.size(), (length, 2))
# check raising errors
with self.assertRaises(OSError):
torchaudio.load("file-does-not-exist.mp3")
with self.assertRaises(OSError):
tdir = os.path.join(
os.path.dirname(self.test_dirpath), "torchaudio")
torchaudio.load(tdir)
def test_2_load_nonormalization(self):
for backend in BACKENDS_MP3:
if backend == 'sox_io':
continue
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_2_load_nonormalization(self.test_filepath, 278756)
def _test_2_load_nonormalization(self, test_filepath, length):
# check no normalizing
x, _ = torchaudio.load(test_filepath, normalization=False)
self.assertTrue(x.min() <= -1.0)
self.assertTrue(x.max() >= 1.0)
# check different input tensor type
x, _ = torchaudio.load(test_filepath, torch.LongTensor(), normalization=False)
self.assertTrue(isinstance(x, torch.LongTensor))
def test_3_load_and_save_is_identity(self):
for backend in BACKENDS:
if backend == 'sox_io':
continue
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_3_load_and_save_is_identity()
def _test_3_load_and_save_is_identity(self):
input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
tensor, sample_rate = torchaudio.load(input_path)
output_path = os.path.join(self.test_dirpath, 'test.wav')
torchaudio.save(output_path, tensor, sample_rate)
tensor2, sample_rate2 = torchaudio.load(output_path)
self.assertTrue(tensor.allclose(tensor2))
self.assertEqual(sample_rate, sample_rate2)
os.unlink(output_path)
@unittest.skipIf(any(be not in BACKENDS for be in ["sox", "soundfile"]), "sox and soundfile are not available")
def test_3_load_and_save_is_identity_across_backend(self):
with self.subTest():
self._test_3_load_and_save_is_identity_across_backend("sox", "soundfile")
with self.subTest():
self._test_3_load_and_save_is_identity_across_backend("soundfile", "sox")
def _test_3_load_and_save_is_identity_across_backend(self, backend1, backend2):
torchaudio.set_audio_backend(backend1)
input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
tensor1, sample_rate1 = torchaudio.load(input_path)
output_path = os.path.join(self.test_dirpath, 'test.wav')
torchaudio.save(output_path, tensor1, sample_rate1)
torchaudio.set_audio_backend(backend2)
tensor2, sample_rate2 = torchaudio.load(output_path)
self.assertTrue(tensor1.allclose(tensor2))
self.assertEqual(sample_rate1, sample_rate2)
os.unlink(output_path)
def test_4_load_partial(self):
for backend in BACKENDS_MP3:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_4_load_partial()
def _test_4_load_partial(self):
num_frames = 101
offset = 201
# load entire mono sinewave wav file, load a partial copy and then compare
input_sine_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
x_sine_full, sr_sine = torchaudio.load(input_sine_path)
x_sine_part, _ = torchaudio.load(input_sine_path, num_frames=num_frames, offset=offset)
l1_error = x_sine_full[:, offset:(num_frames + offset)].sub(x_sine_part).abs().sum().item()
# test for the correct number of samples and that the correct portion was loaded
self.assertEqual(x_sine_part.size(1), num_frames)
self.assertEqual(l1_error, 0.)
# create a two channel version of this wavefile
x_2ch_sine = x_sine_full.repeat(1, 2)
out_2ch_sine_path = os.path.join(self.test_dirpath, 'assets', '2ch_sinewave.wav')
torchaudio.save(out_2ch_sine_path, x_2ch_sine, sr_sine)
x_2ch_sine_load, _ = torchaudio.load(out_2ch_sine_path, num_frames=num_frames, offset=offset)
os.unlink(out_2ch_sine_path)
l1_error = x_2ch_sine_load.sub(x_2ch_sine[:, offset:(offset + num_frames)]).abs().sum().item()
self.assertEqual(l1_error, 0.)
# test with two channel mp3
x_2ch_full, sr_2ch = torchaudio.load(self.test_filepath, normalization=True)
x_2ch_part, _ = torchaudio.load(self.test_filepath, normalization=True, num_frames=num_frames, offset=offset)
l1_error = x_2ch_full[:, offset:(offset + num_frames)].sub(x_2ch_part).abs().sum().item()
self.assertEqual(x_2ch_part.size(1), num_frames)
self.assertEqual(l1_error, 0.)
# check behavior if number of samples would exceed file length
offset_ns = 300
x_ns, _ = torchaudio.load(input_sine_path, num_frames=100000, offset=offset_ns)
self.assertEqual(x_ns.size(1), x_sine_full.size(1) - offset_ns)
# check when offset is beyond the end of the file
with self.assertRaises(RuntimeError):
torchaudio.load(input_sine_path, offset=100000)
def test_5_get_info(self):
for backend in BACKENDS:
with self.subTest():
torchaudio.set_audio_backend(backend)
self._test_5_get_info()
def _test_5_get_info(self):
input_path = os.path.join(self.test_dirpath, 'assets', 'sinewave.wav')
channels, samples, rate, precision = (1, 64000, 16000, 16)
si, ei = torchaudio.info(input_path)
self.assertEqual(si.channels, channels)
self.assertEqual(si.length, samples)
self.assertEqual(si.rate, rate)
self.assertEqual(ei.bits_per_sample, precision)
|