1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
"""Test suites for numerical compatibility with librosa"""
import os
import unittest
from distutils.version import StrictVersion
import torch
import torchaudio
import torchaudio.functional as F
from torchaudio._internal.module_utils import is_module_available
LIBROSA_AVAILABLE = is_module_available('librosa')
if LIBROSA_AVAILABLE:
import numpy as np
import librosa
import scipy
import pytest
from torchaudio_unittest import common_utils
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
class TestFunctional(common_utils.TorchaudioTestCase):
"""Test suite for functions in `functional` module."""
def test_griffinlim(self):
# NOTE: This test is flaky without a fixed random seed
# See https://github.com/pytorch/audio/issues/382
torch.random.manual_seed(42)
tensor = torch.rand((1, 1000))
n_fft = 400
ws = 400
hop = 100
window = torch.hann_window(ws)
normalize = False
momentum = 0.99
n_iter = 8
length = 1000
rand_init = False
init = 'random' if rand_init else None
specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt()
ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1, normalize,
n_iter, momentum, length, rand_init)
lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop,
momentum=momentum, init=init, length=length)
lr_out = torch.from_numpy(lr_out).unsqueeze(0)
self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
def _test_create_fb(self, n_mels=40, sample_rate=22050, n_fft=2048, fmin=0.0, fmax=8000.0, norm=None):
librosa_fb = librosa.filters.mel(sr=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
fmax=fmax,
fmin=fmin,
htk=True,
norm=norm)
fb = F.create_fb_matrix(sample_rate=sample_rate,
n_mels=n_mels,
f_max=fmax,
f_min=fmin,
n_freqs=(n_fft // 2 + 1),
norm=norm)
for i_mel_bank in range(n_mels):
self.assertEqual(
fb[:, i_mel_bank], torch.tensor(librosa_fb[i_mel_bank]), atol=1e-4, rtol=1e-5)
def test_create_fb(self):
self._test_create_fb()
self._test_create_fb(n_mels=128, sample_rate=44100)
self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0)
self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0)
self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0)
self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0)
self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0)
if StrictVersion(librosa.__version__) < StrictVersion("0.7.2"):
return
self._test_create_fb(n_mels=128, sample_rate=44100, norm="slaney")
self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0, norm="slaney")
self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0, norm="slaney")
self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0, norm="slaney")
self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0, norm="slaney")
self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0, norm="slaney")
def test_amplitude_to_DB(self):
spec = torch.rand((6, 201))
amin = 1e-10
db_multiplier = 0.0
top_db = 80.0
# Power to DB
multiplier = 10.0
ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
lr_out = librosa.core.power_to_db(spec.numpy())
lr_out = torch.from_numpy(lr_out)
self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
# Amplitude to DB
multiplier = 20.0
ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
lr_out = librosa.core.amplitude_to_db(spec.numpy())
lr_out = torch.from_numpy(lr_out)
self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
@pytest.mark.parametrize('complex_specgrams', [
torch.randn(2, 1025, 400, 2)
])
@pytest.mark.parametrize('rate', [0.5, 1.01, 1.3])
@pytest.mark.parametrize('hop_length', [256])
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
def test_phase_vocoder(complex_specgrams, rate, hop_length):
# Due to cummulative sum, numerical error in using torch.float32 will
# result in bottom right values of the stretched sectrogram to not
# match with librosa.
complex_specgrams = complex_specgrams.type(torch.float64)
phase_advance = torch.linspace(0, np.pi * hop_length, complex_specgrams.shape[-3], dtype=torch.float64)[..., None]
complex_specgrams_stretch = F.phase_vocoder(complex_specgrams, rate=rate, phase_advance=phase_advance)
# == Test shape
expected_size = list(complex_specgrams.size())
expected_size[-2] = int(np.ceil(expected_size[-2] / rate))
assert complex_specgrams.dim() == complex_specgrams_stretch.dim()
assert complex_specgrams_stretch.size() == torch.Size(expected_size)
# == Test values
index = [0] * (complex_specgrams.dim() - 3) + [slice(None)] * 3
mono_complex_specgram = complex_specgrams[index].numpy()
mono_complex_specgram = mono_complex_specgram[..., 0] + \
mono_complex_specgram[..., 1] * 1j
expected_complex_stretch = librosa.phase_vocoder(mono_complex_specgram,
rate=rate,
hop_length=hop_length)
complex_stretch = complex_specgrams_stretch[index].numpy()
complex_stretch = complex_stretch[..., 0] + 1j * complex_stretch[..., 1]
assert np.allclose(complex_stretch, expected_complex_stretch, atol=1e-5)
def _load_audio_asset(*asset_paths, **kwargs):
file_path = common_utils.get_asset_path(*asset_paths)
sound, sample_rate = torchaudio.load(file_path, **kwargs)
return sound, sample_rate
@unittest.skipIf(not LIBROSA_AVAILABLE, "Librosa not available")
class TestTransforms(common_utils.TorchaudioTestCase):
"""Test suite for functions in `transforms` module."""
def assert_compatibilities(self, n_fft, hop_length, power, n_mels, n_mfcc, sample_rate):
common_utils.set_audio_backend('default')
path = common_utils.get_asset_path('sinewave.wav')
sound, sample_rate = common_utils.load_wav(path)
sound_librosa = sound.cpu().numpy().squeeze() # (64000)
# test core spectrogram
spect_transform = torchaudio.transforms.Spectrogram(
n_fft=n_fft, hop_length=hop_length, power=power)
out_librosa, _ = librosa.core.spectrum._spectrogram(
y=sound_librosa, n_fft=n_fft, hop_length=hop_length, power=power)
out_torch = spect_transform(sound).squeeze().cpu()
self.assertEqual(out_torch, torch.from_numpy(out_librosa), atol=1e-5, rtol=1e-5)
# test mel spectrogram
melspect_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate, window_fn=torch.hann_window,
hop_length=hop_length, n_mels=n_mels, n_fft=n_fft)
librosa_mel = librosa.feature.melspectrogram(
y=sound_librosa, sr=sample_rate, n_fft=n_fft,
hop_length=hop_length, n_mels=n_mels, htk=True, norm=None)
librosa_mel_tensor = torch.from_numpy(librosa_mel)
torch_mel = melspect_transform(sound).squeeze().cpu()
self.assertEqual(
torch_mel.type(librosa_mel_tensor.dtype), librosa_mel_tensor, atol=5e-3, rtol=1e-5)
# test s2db
power_to_db_transform = torchaudio.transforms.AmplitudeToDB('power', 80.)
power_to_db_torch = power_to_db_transform(spect_transform(sound)).squeeze().cpu()
power_to_db_librosa = librosa.core.spectrum.power_to_db(out_librosa)
self.assertEqual(power_to_db_torch, torch.from_numpy(power_to_db_librosa), atol=5e-3, rtol=1e-5)
mag_to_db_transform = torchaudio.transforms.AmplitudeToDB('magnitude', 80.)
mag_to_db_torch = mag_to_db_transform(torch.abs(sound)).squeeze().cpu()
mag_to_db_librosa = librosa.core.spectrum.amplitude_to_db(sound_librosa)
self.assertEqual(mag_to_db_torch, torch.from_numpy(mag_to_db_librosa), atol=5e-3, rtol=1e-5)
power_to_db_torch = power_to_db_transform(melspect_transform(sound)).squeeze().cpu()
db_librosa = librosa.core.spectrum.power_to_db(librosa_mel)
db_librosa_tensor = torch.from_numpy(db_librosa)
self.assertEqual(
power_to_db_torch.type(db_librosa_tensor.dtype), db_librosa_tensor, atol=5e-3, rtol=1e-5)
# test MFCC
melkwargs = {'hop_length': hop_length, 'n_fft': n_fft}
mfcc_transform = torchaudio.transforms.MFCC(
sample_rate=sample_rate, n_mfcc=n_mfcc, norm='ortho', melkwargs=melkwargs)
# librosa.feature.mfcc doesn't pass kwargs properly since some of the
# kwargs for melspectrogram and mfcc are the same. We just follow the
# function body in
# https://librosa.github.io/librosa/_modules/librosa/feature/spectral.html#melspectrogram
# to mirror this function call with correct args:
#
# librosa_mfcc = librosa.feature.mfcc(
# y=sound_librosa, sr=sample_rate, n_mfcc = n_mfcc,
# hop_length=hop_length, n_fft=n_fft, htk=True, norm=None, n_mels=n_mels)
librosa_mfcc = scipy.fftpack.dct(db_librosa, axis=0, type=2, norm='ortho')[:n_mfcc]
librosa_mfcc_tensor = torch.from_numpy(librosa_mfcc)
torch_mfcc = mfcc_transform(sound).squeeze().cpu()
self.assertEqual(
torch_mfcc.type(librosa_mfcc_tensor.dtype), librosa_mfcc_tensor, atol=5e-3, rtol=1e-5)
def test_basics1(self):
kwargs = {
'n_fft': 400,
'hop_length': 200,
'power': 2.0,
'n_mels': 128,
'n_mfcc': 40,
'sample_rate': 16000
}
self.assert_compatibilities(**kwargs)
def test_basics2(self):
kwargs = {
'n_fft': 600,
'hop_length': 100,
'power': 2.0,
'n_mels': 128,
'n_mfcc': 20,
'sample_rate': 16000
}
self.assert_compatibilities(**kwargs)
# NOTE: Test passes offline, but fails on TravisCI (and CircleCI), see #372.
@unittest.skipIf('CI' in os.environ, 'Test is known to fail on CI')
def test_basics3(self):
kwargs = {
'n_fft': 200,
'hop_length': 50,
'power': 2.0,
'n_mels': 128,
'n_mfcc': 50,
'sample_rate': 24000
}
self.assert_compatibilities(**kwargs)
def test_basics4(self):
kwargs = {
'n_fft': 400,
'hop_length': 200,
'power': 3.0,
'n_mels': 128,
'n_mfcc': 40,
'sample_rate': 16000
}
self.assert_compatibilities(**kwargs)
def test_MelScale(self):
"""MelScale transform is comparable to that of librosa"""
n_fft = 2048
n_mels = 256
hop_length = n_fft // 4
sample_rate = 44100
sound = common_utils.get_whitenoise(sample_rate=sample_rate, duration=60)
sound = sound.mean(dim=0, keepdim=True)
spec_ta = F.spectrogram(
sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
spec_lr = spec_ta.cpu().numpy().squeeze()
# Perform MelScale with torchaudio and librosa
melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_ta)
melspec_lr = librosa.feature.melspectrogram(
S=spec_lr, sr=sample_rate, n_fft=n_fft, hop_length=hop_length,
win_length=n_fft, center=True, window='hann', n_mels=n_mels, htk=True, norm=None)
# Note: Using relaxed rtol instead of atol
self.assertEqual(melspec_ta, torch.from_numpy(melspec_lr[None, ...]), atol=1e-8, rtol=1e-3)
def test_InverseMelScale(self):
"""InverseMelScale transform is comparable to that of librosa"""
n_fft = 2048
n_mels = 256
n_stft = n_fft // 2 + 1
hop_length = n_fft // 4
# Prepare mel spectrogram input. We use torchaudio to compute one.
path = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
sound, sample_rate = common_utils.load_wav(path)
sound = sound[:, 2**10:2**10 + 2**14]
sound = sound.mean(dim=0, keepdim=True)
spec_orig = F.spectrogram(
sound, pad=0, window=torch.hann_window(n_fft), n_fft=n_fft,
hop_length=hop_length, win_length=n_fft, power=2, normalized=False)
melspec_ta = torchaudio.transforms.MelScale(n_mels=n_mels, sample_rate=sample_rate)(spec_orig)
melspec_lr = melspec_ta.cpu().numpy().squeeze()
# Perform InverseMelScale with torch audio and librosa
spec_ta = torchaudio.transforms.InverseMelScale(
n_stft, n_mels=n_mels, sample_rate=sample_rate)(melspec_ta)
spec_lr = librosa.feature.inverse.mel_to_stft(
melspec_lr, sr=sample_rate, n_fft=n_fft, power=2.0, htk=True, norm=None)
spec_lr = torch.from_numpy(spec_lr[None, ...])
# Align dimensions
# librosa does not return power spectrogram while torchaudio returns power spectrogram
spec_orig = spec_orig.sqrt()
spec_ta = spec_ta.sqrt()
threshold = 2.0
# This threshold was choosen empirically, based on the following observation
#
# torch.dist(spec_lr, spec_ta, p=float('inf'))
# >>> tensor(1.9666)
#
# The spectrograms reconstructed by librosa and torchaudio are not comparable elementwise.
# This is because they use different approximation algorithms and resulting values can live
# in different magnitude. (although most of them are very close)
# See
# https://github.com/pytorch/audio/pull/366 for the discussion of the choice of algorithm
# https://github.com/pytorch/audio/pull/448/files#r385747021 for the distribution of P-inf
# distance over frequencies.
self.assertEqual(spec_ta, spec_lr, atol=threshold, rtol=1e-5)
threshold = 1700.0
# This threshold was choosen empirically, based on the following observations
#
# torch.dist(spec_orig, spec_ta, p=1)
# >>> tensor(1644.3516)
# torch.dist(spec_orig, spec_lr, p=1)
# >>> tensor(1420.7103)
# torch.dist(spec_lr, spec_ta, p=1)
# >>> tensor(943.2759)
assert torch.dist(spec_orig, spec_ta, p=1) < threshold
|