1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
import itertools
from typing import Optional
import torch
import torchaudio
from parameterized import parameterized
from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
skipIfNoExec,
skipIfNoExtension,
get_wav_data,
save_wav,
load_wav,
sox_utils,
)
from .common import (
name_func,
)
def py_info_func(filepath: str) -> torchaudio.backend.sox_io_backend.AudioMetaData:
return torchaudio.info(filepath)
def py_load_func(filepath: str, normalize: bool, channels_first: bool):
return torchaudio.load(
filepath, normalize=normalize, channels_first=channels_first)
def py_save_func(
filepath: str,
tensor: torch.Tensor,
sample_rate: int,
channels_first: bool = True,
compression: Optional[float] = None,
):
torchaudio.save(filepath, tensor, sample_rate, channels_first, compression)
@skipIfNoExec('sox')
@skipIfNoExtension
class SoxIO(TempDirMixin, TorchaudioTestCase):
"""TorchScript-ability Test suite for `sox_io_backend`"""
backend = 'sox_io'
@parameterized.expand(list(itertools.product(
['float32', 'int32', 'int16', 'uint8'],
[8000, 16000],
[1, 2],
)), name_func=name_func)
def test_info_wav(self, dtype, sample_rate, num_channels):
"""`sox_io_backend.info` is torchscript-able and returns the same result"""
audio_path = self.get_temp_path(f'{dtype}_{sample_rate}_{num_channels}.wav')
data = get_wav_data(dtype, num_channels, normalize=False, num_frames=1 * sample_rate)
save_wav(audio_path, data, sample_rate)
script_path = self.get_temp_path('info_func.zip')
torch.jit.script(py_info_func).save(script_path)
ts_info_func = torch.jit.load(script_path)
py_info = py_info_func(audio_path)
ts_info = ts_info_func(audio_path)
assert py_info.sample_rate == ts_info.sample_rate
assert py_info.num_frames == ts_info.num_frames
assert py_info.num_channels == ts_info.num_channels
@parameterized.expand(list(itertools.product(
['float32', 'int32', 'int16', 'uint8'],
[8000, 16000],
[1, 2],
[False, True],
[False, True],
)), name_func=name_func)
def test_load_wav(self, dtype, sample_rate, num_channels, normalize, channels_first):
"""`sox_io_backend.load` is torchscript-able and returns the same result"""
audio_path = self.get_temp_path(f'test_load_{dtype}_{sample_rate}_{num_channels}_{normalize}.wav')
data = get_wav_data(dtype, num_channels, normalize=False, num_frames=1 * sample_rate)
save_wav(audio_path, data, sample_rate)
script_path = self.get_temp_path('load_func.zip')
torch.jit.script(py_load_func).save(script_path)
ts_load_func = torch.jit.load(script_path)
py_data, py_sr = py_load_func(
audio_path, normalize=normalize, channels_first=channels_first)
ts_data, ts_sr = ts_load_func(
audio_path, normalize=normalize, channels_first=channels_first)
self.assertEqual(py_sr, ts_sr)
self.assertEqual(py_data, ts_data)
@parameterized.expand(list(itertools.product(
['float32', 'int32', 'int16', 'uint8'],
[8000, 16000],
[1, 2],
)), name_func=name_func)
def test_save_wav(self, dtype, sample_rate, num_channels):
script_path = self.get_temp_path('save_func.zip')
torch.jit.script(py_save_func).save(script_path)
ts_save_func = torch.jit.load(script_path)
expected = get_wav_data(dtype, num_channels)
py_path = self.get_temp_path(f'test_save_py_{dtype}_{sample_rate}_{num_channels}.wav')
ts_path = self.get_temp_path(f'test_save_ts_{dtype}_{sample_rate}_{num_channels}.wav')
py_save_func(py_path, expected, sample_rate, True, None)
ts_save_func(ts_path, expected, sample_rate, True, None)
py_data, py_sr = load_wav(py_path)
ts_data, ts_sr = load_wav(ts_path)
self.assertEqual(sample_rate, py_sr)
self.assertEqual(sample_rate, ts_sr)
self.assertEqual(expected, py_data)
self.assertEqual(expected, ts_data)
@parameterized.expand(list(itertools.product(
[8000, 16000],
[1, 2],
list(range(9)),
)), name_func=name_func)
def test_save_flac(self, sample_rate, num_channels, compression_level):
script_path = self.get_temp_path('save_func.zip')
torch.jit.script(py_save_func).save(script_path)
ts_save_func = torch.jit.load(script_path)
expected = get_wav_data('float32', num_channels)
py_path = self.get_temp_path(f'test_save_py_{sample_rate}_{num_channels}_{compression_level}.flac')
ts_path = self.get_temp_path(f'test_save_ts_{sample_rate}_{num_channels}_{compression_level}.flac')
py_save_func(py_path, expected, sample_rate, True, compression_level)
ts_save_func(ts_path, expected, sample_rate, True, compression_level)
# converting to 32 bit because flac file has 24 bit depth which scipy cannot handle.
py_path_wav = f'{py_path}.wav'
ts_path_wav = f'{ts_path}.wav'
sox_utils.convert_audio_file(py_path, py_path_wav, bit_depth=32)
sox_utils.convert_audio_file(ts_path, ts_path_wav, bit_depth=32)
py_data, py_sr = load_wav(py_path_wav, normalize=True)
ts_data, ts_sr = load_wav(ts_path_wav, normalize=True)
self.assertEqual(sample_rate, py_sr)
self.assertEqual(sample_rate, ts_sr)
self.assertEqual(expected, py_data)
self.assertEqual(expected, ts_data)
|