File: torchscript_consistency_impl.py

package info (click to toggle)
pytorch-audio 0.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,512 kB
  • sloc: python: 15,606; cpp: 1,352; sh: 257; makefile: 21
file content (626 lines) | stat: -rw-r--r-- 20,260 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
"""Test suites for jit-ability and its numerical compatibility"""
import unittest

import torch
import torchaudio.functional as F
import torchaudio.transforms as T

from torchaudio_unittest import common_utils


class Functional(common_utils.TestBaseMixin):
    """Implements test for `functinoal` modul that are performed for different devices"""
    def _assert_consistency(self, func, tensor, shape_only=False):
        tensor = tensor.to(device=self.device, dtype=self.dtype)

        ts_func = torch.jit.script(func)
        output = func(tensor)
        ts_output = ts_func(tensor)
        if shape_only:
            ts_output = ts_output.shape
            output = output.shape
        self.assertEqual(ts_output, output)

    def test_spectrogram(self):
        def func(tensor):
            n_fft = 400
            ws = 400
            hop = 200
            pad = 0
            window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
            power = 2.
            normalize = False
            return F.spectrogram(tensor, pad, window, n_fft, hop, ws, power, normalize)

        tensor = common_utils.get_whitenoise()
        self._assert_consistency(func, tensor)

    def test_griffinlim(self):
        def func(tensor):
            n_fft = 400
            ws = 400
            hop = 200
            window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
            power = 2.
            normalize = False
            momentum = 0.99
            n_iter = 32
            length = 1000
            rand_int = False
            return F.griffinlim(tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, rand_int)

        tensor = torch.rand((1, 201, 6))
        self._assert_consistency(func, tensor)

    def test_compute_deltas(self):
        def func(tensor):
            win_length = 2 * 7 + 1
            return F.compute_deltas(tensor, win_length=win_length)

        channel = 13
        n_mfcc = channel * 3
        time = 1021
        tensor = torch.randn(channel, n_mfcc, time)
        self._assert_consistency(func, tensor)

    def test_detect_pitch_frequency(self):
        waveform = common_utils.get_sinusoid(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            return F.detect_pitch_frequency(tensor, sample_rate)

        self._assert_consistency(func, waveform)

    def test_create_fb_matrix(self):
        if self.device != torch.device('cpu'):
            raise unittest.SkipTest('No need to perform test on device other than CPU')

        def func(_):
            n_stft = 100
            f_min = 0.0
            f_max = 20.0
            n_mels = 10
            sample_rate = 16000
            norm = "slaney"
            return F.create_fb_matrix(n_stft, f_min, f_max, n_mels, sample_rate, norm)

        dummy = torch.zeros(1, 1)
        self._assert_consistency(func, dummy)

    def test_amplitude_to_DB(self):
        def func(tensor):
            multiplier = 10.0
            amin = 1e-10
            db_multiplier = 0.0
            top_db = 80.0
            return F.amplitude_to_DB(tensor, multiplier, amin, db_multiplier, top_db)

        tensor = torch.rand((6, 201))
        self._assert_consistency(func, tensor)

    def test_DB_to_amplitude(self):
        def func(tensor):
            ref = 1.
            power = 1.
            return F.DB_to_amplitude(tensor, ref, power)

        tensor = torch.rand((1, 100))
        self._assert_consistency(func, tensor)

    def test_create_dct(self):
        if self.device != torch.device('cpu'):
            raise unittest.SkipTest('No need to perform test on device other than CPU')

        def func(_):
            n_mfcc = 40
            n_mels = 128
            norm = "ortho"
            return F.create_dct(n_mfcc, n_mels, norm)

        dummy = torch.zeros(1, 1)
        self._assert_consistency(func, dummy)

    def test_mu_law_encoding(self):
        def func(tensor):
            qc = 256
            return F.mu_law_encoding(tensor, qc)

        waveform = common_utils.get_whitenoise()
        self._assert_consistency(func, waveform)

    def test_mu_law_decoding(self):
        def func(tensor):
            qc = 256
            return F.mu_law_decoding(tensor, qc)

        tensor = torch.rand((1, 10))
        self._assert_consistency(func, tensor)

    def test_complex_norm(self):
        def func(tensor):
            power = 2.
            return F.complex_norm(tensor, power)

        tensor = torch.randn(1, 2, 1025, 400, 2)
        self._assert_consistency(func, tensor)

    def test_mask_along_axis(self):
        def func(tensor):
            mask_param = 100
            mask_value = 30.
            axis = 2
            return F.mask_along_axis(tensor, mask_param, mask_value, axis)

        tensor = torch.randn(2, 1025, 400)
        self._assert_consistency(func, tensor)

    def test_mask_along_axis_iid(self):
        def func(tensor):
            mask_param = 100
            mask_value = 30.
            axis = 2
            return F.mask_along_axis_iid(tensor, mask_param, mask_value, axis)

        tensor = torch.randn(4, 2, 1025, 400)
        self._assert_consistency(func, tensor)

    def test_gain(self):
        def func(tensor):
            gainDB = 2.0
            return F.gain(tensor, gainDB)

        tensor = torch.rand((1, 1000))
        self._assert_consistency(func, tensor)

    def test_dither_TPDF(self):
        def func(tensor):
            return F.dither(tensor, 'TPDF')

        tensor = common_utils.get_whitenoise(n_channels=2)
        self._assert_consistency(func, tensor, shape_only=True)

    def test_dither_RPDF(self):
        def func(tensor):
            return F.dither(tensor, 'RPDF')

        tensor = common_utils.get_whitenoise(n_channels=2)
        self._assert_consistency(func, tensor, shape_only=True)

    def test_dither_GPDF(self):
        def func(tensor):
            return F.dither(tensor, 'GPDF')

        tensor = common_utils.get_whitenoise(n_channels=2)
        self._assert_consistency(func, tensor, shape_only=True)

    def test_dither_noise_shaping(self):
        def func(tensor):
            return F.dither(tensor, noise_shaping=True)

        tensor = common_utils.get_whitenoise(n_channels=2)
        self._assert_consistency(func, tensor)

    def test_lfilter(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise()

        def func(tensor):
            # Design an IIR lowpass filter using scipy.signal filter design
            # https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign
            #
            # Example
            #     >>> from scipy.signal import iirdesign
            #     >>> b, a = iirdesign(0.2, 0.3, 1, 60)
            b_coeffs = torch.tensor(
                [
                    0.00299893,
                    -0.0051152,
                    0.00841964,
                    -0.00747802,
                    0.00841964,
                    -0.0051152,
                    0.00299893,
                ],
                device=tensor.device,
                dtype=tensor.dtype,
            )
            a_coeffs = torch.tensor(
                [
                    1.0,
                    -4.8155751,
                    10.2217618,
                    -12.14481273,
                    8.49018171,
                    -3.3066882,
                    0.56088705,
                ],
                device=tensor.device,
                dtype=tensor.dtype,
            )
            return F.lfilter(tensor, a_coeffs, b_coeffs)

        self._assert_consistency(func, waveform)

    def test_lowpass(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            cutoff_freq = 3000.
            return F.lowpass_biquad(tensor, sample_rate, cutoff_freq)

        self._assert_consistency(func, waveform)

    def test_highpass(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            cutoff_freq = 2000.
            return F.highpass_biquad(tensor, sample_rate, cutoff_freq)

        self._assert_consistency(func, waveform)

    def test_allpass(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            return F.allpass_biquad(tensor, sample_rate, central_freq, q)

        self._assert_consistency(func, waveform)

    def test_bandpass_with_csg(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            const_skirt_gain = True
            return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)

        self._assert_consistency(func, waveform)

    def test_bandpass_without_csg(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            const_skirt_gain = True
            return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)

        self._assert_consistency(func, waveform)

    def test_bandreject(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            return F.bandreject_biquad(tensor, sample_rate, central_freq, q)

        self._assert_consistency(func, waveform)

    def test_band_with_noise(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            noise = True
            return F.band_biquad(tensor, sample_rate, central_freq, q, noise)

        self._assert_consistency(func, waveform)

    def test_band_without_noise(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            central_freq = 1000.
            q = 0.707
            noise = False
            return F.band_biquad(tensor, sample_rate, central_freq, q, noise)

        self._assert_consistency(func, waveform)

    def test_treble(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            gain = 40.
            central_freq = 1000.
            q = 0.707
            return F.treble_biquad(tensor, sample_rate, gain, central_freq, q)

        self._assert_consistency(func, waveform)

    def test_bass(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            gain = 40.
            central_freq = 1000.
            q = 0.707
            return F.bass_biquad(tensor, sample_rate, gain, central_freq, q)

        self._assert_consistency(func, waveform)

    def test_deemph(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            return F.deemph_biquad(tensor, sample_rate)

        self._assert_consistency(func, waveform)

    def test_riaa(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            return F.riaa_biquad(tensor, sample_rate)

        self._assert_consistency(func, waveform)

    def test_equalizer(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            sample_rate = 44100
            center_freq = 300.
            gain = 1.
            q = 0.707
            return F.equalizer_biquad(tensor, sample_rate, center_freq, gain, q)

        self._assert_consistency(func, waveform)

    def test_perf_biquad_filtering(self):
        if self.dtype == torch.float64:
            raise unittest.SkipTest("This test is known to fail for float64")

        waveform = common_utils.get_whitenoise()

        def func(tensor):
            a = torch.tensor([0.7, 0.2, 0.6], device=tensor.device, dtype=tensor.dtype)
            b = torch.tensor([0.4, 0.2, 0.9], device=tensor.device, dtype=tensor.dtype)
            return F.lfilter(tensor, a, b)

        self._assert_consistency(func, waveform)

    def test_sliding_window_cmn(self):
        def func(tensor):
            cmn_window = 600
            min_cmn_window = 100
            center = False
            norm_vars = False
            a = torch.tensor(
                [
                    [
                        -1.915875792503357,
                        1.147700309753418
                    ],
                    [
                        1.8242558240890503,
                        1.3869990110397339
                    ]
                ],
                device=tensor.device,
                dtype=tensor.dtype
            )
            return F.sliding_window_cmn(a, cmn_window, min_cmn_window, center, norm_vars)
        b = torch.tensor(
            [
                [
                    -1.8701,
                    -0.1196
                ],
                [
                    1.8701,
                    0.1196
                ]
            ]
        )
        self._assert_consistency(func, b)

    def test_contrast(self):
        waveform = common_utils.get_whitenoise()

        def func(tensor):
            enhancement_amount = 80.
            return F.contrast(tensor, enhancement_amount)

        self._assert_consistency(func, waveform)

    def test_dcshift(self):
        waveform = common_utils.get_whitenoise()

        def func(tensor):
            shift = 0.5
            limiter_gain = 0.05
            return F.dcshift(tensor, shift, limiter_gain)

        self._assert_consistency(func, waveform)

    def test_overdrive(self):
        waveform = common_utils.get_whitenoise()

        def func(tensor):
            gain = 30.
            colour = 50.
            return F.overdrive(tensor, gain, colour)

        self._assert_consistency(func, waveform)

    def test_phaser(self):
        waveform = common_utils.get_whitenoise(sample_rate=44100)

        def func(tensor):
            gain_in = 0.5
            gain_out = 0.8
            delay_ms = 2.0
            decay = 0.4
            speed = 0.5
            sample_rate = 44100
            return F.phaser(tensor, sample_rate, gain_in, gain_out, delay_ms, decay, speed, sinusoidal=True)

        self._assert_consistency(func, waveform)

    def test_flanger(self):
        torch.random.manual_seed(40)
        waveform = torch.rand(2, 100) - 0.5

        def func(tensor):
            delay = 0.8
            depth = 0.88
            regen = 3.0
            width = 0.23
            speed = 1.3
            phase = 60.
            sample_rate = 44100
            return F.flanger(tensor, sample_rate, delay, depth, regen, width, speed,
                             phase, modulation='sinusoidal', interpolation='linear')

        self._assert_consistency(func, waveform)


class Transforms(common_utils.TestBaseMixin):
    """Implements test for Transforms that are performed for different devices"""
    def _assert_consistency(self, transform, tensor):
        tensor = tensor.to(device=self.device, dtype=self.dtype)
        transform = transform.to(device=self.device, dtype=self.dtype)

        ts_transform = torch.jit.script(transform)
        output = transform(tensor)
        ts_output = ts_transform(tensor)
        self.assertEqual(ts_output, output)

    def test_Spectrogram(self):
        tensor = torch.rand((1, 1000))
        self._assert_consistency(T.Spectrogram(), tensor)

    def test_GriffinLim(self):
        tensor = torch.rand((1, 201, 6))
        self._assert_consistency(T.GriffinLim(length=1000, rand_init=False), tensor)

    def test_AmplitudeToDB(self):
        spec = torch.rand((6, 201))
        self._assert_consistency(T.AmplitudeToDB(), spec)

    def test_MelScale(self):
        spec_f = torch.rand((1, 6, 201))
        self._assert_consistency(T.MelScale(), spec_f)

    def test_MelSpectrogram(self):
        tensor = torch.rand((1, 1000))
        self._assert_consistency(T.MelSpectrogram(), tensor)

    def test_MFCC(self):
        tensor = torch.rand((1, 1000))
        self._assert_consistency(T.MFCC(), tensor)

    def test_Resample(self):
        sr1, sr2 = 16000, 8000
        tensor = common_utils.get_whitenoise(sample_rate=sr1)
        self._assert_consistency(T.Resample(float(sr1), float(sr2)), tensor)

    def test_ComplexNorm(self):
        tensor = torch.rand((1, 2, 201, 2))
        self._assert_consistency(T.ComplexNorm(), tensor)

    def test_MuLawEncoding(self):
        tensor = common_utils.get_whitenoise()
        self._assert_consistency(T.MuLawEncoding(), tensor)

    def test_MuLawDecoding(self):
        tensor = torch.rand((1, 10))
        self._assert_consistency(T.MuLawDecoding(), tensor)

    def test_TimeStretch(self):
        n_freq = 400
        hop_length = 512
        fixed_rate = 1.3
        tensor = torch.rand((10, 2, n_freq, 10, 2))
        self._assert_consistency(
            T.TimeStretch(n_freq=n_freq, hop_length=hop_length, fixed_rate=fixed_rate),
            tensor,
        )

    def test_Fade(self):
        waveform = common_utils.get_whitenoise()
        fade_in_len = 3000
        fade_out_len = 3000
        self._assert_consistency(T.Fade(fade_in_len, fade_out_len), waveform)

    def test_FrequencyMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
        self._assert_consistency(T.FrequencyMasking(freq_mask_param=60, iid_masks=False), tensor)

    def test_TimeMasking(self):
        tensor = torch.rand((10, 2, 50, 10, 2))
        self._assert_consistency(T.TimeMasking(time_mask_param=30, iid_masks=False), tensor)

    def test_Vol(self):
        waveform = common_utils.get_whitenoise()
        self._assert_consistency(T.Vol(1.1), waveform)

    def test_SlidingWindowCmn(self):
        tensor = torch.rand((1000, 10))
        self._assert_consistency(T.SlidingWindowCmn(), tensor)

    def test_Vad(self):
        filepath = common_utils.get_asset_path("vad-go-mono-32000.wav")
        waveform, sample_rate = common_utils.load_wav(filepath)
        self._assert_consistency(T.Vad(sample_rate=sample_rate), waveform)