File: transforms_test.py

package info (click to toggle)
pytorch-audio 0.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,512 kB
  • sloc: python: 15,606; cpp: 1,352; sh: 257; makefile: 21
file content (221 lines) | stat: -rw-r--r-- 9,916 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import math
import unittest

import torch
import torchaudio
import torchaudio.transforms as transforms
import torchaudio.functional as F

from torchaudio_unittest import common_utils


class Tester(common_utils.TorchaudioTestCase):
    backend = 'default'

    # create a sinewave signal for testing
    sample_rate = 16000
    freq = 440
    volume = .3
    waveform = (torch.cos(2 * math.pi * torch.arange(0, 4 * sample_rate).float() * freq / sample_rate))
    waveform.unsqueeze_(0)  # (1, 64000)
    waveform = (waveform * volume * 2**31).long()

    def scale(self, waveform, factor=2.0**31):
        # scales a waveform by a factor
        if not waveform.is_floating_point():
            waveform = waveform.to(torch.get_default_dtype())
        return waveform / factor

    def test_mu_law_companding(self):

        quantization_channels = 256

        waveform = self.waveform.clone()
        if not waveform.is_floating_point():
            waveform = waveform.to(torch.get_default_dtype())
        waveform /= torch.abs(waveform).max()

        self.assertTrue(waveform.min() >= -1. and waveform.max() <= 1.)

        waveform_mu = transforms.MuLawEncoding(quantization_channels)(waveform)
        self.assertTrue(waveform_mu.min() >= 0. and waveform_mu.max() <= quantization_channels)

        waveform_exp = transforms.MuLawDecoding(quantization_channels)(waveform_mu)
        self.assertTrue(waveform_exp.min() >= -1. and waveform_exp.max() <= 1.)

    def test_AmplitudeToDB(self):
        filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
        waveform = common_utils.load_wav(filepath)[0]

        mag_to_db_transform = transforms.AmplitudeToDB('magnitude', 80.)
        power_to_db_transform = transforms.AmplitudeToDB('power', 80.)

        mag_to_db_torch = mag_to_db_transform(torch.abs(waveform))
        power_to_db_torch = power_to_db_transform(torch.pow(waveform, 2))

        self.assertEqual(mag_to_db_torch, power_to_db_torch)

    def test_melscale_load_save(self):
        specgram = torch.ones(1, 1000, 100)
        melscale_transform = transforms.MelScale()
        melscale_transform(specgram)

        melscale_transform_copy = transforms.MelScale(n_stft=1000)
        melscale_transform_copy.load_state_dict(melscale_transform.state_dict())

        fb = melscale_transform.fb
        fb_copy = melscale_transform_copy.fb

        self.assertEqual(fb_copy.size(), (1000, 128))
        self.assertEqual(fb, fb_copy)

    def test_melspectrogram_load_save(self):
        waveform = self.waveform.float()
        mel_spectrogram_transform = transforms.MelSpectrogram()
        mel_spectrogram_transform(waveform)

        mel_spectrogram_transform_copy = transforms.MelSpectrogram()
        mel_spectrogram_transform_copy.load_state_dict(mel_spectrogram_transform.state_dict())

        window = mel_spectrogram_transform.spectrogram.window
        window_copy = mel_spectrogram_transform_copy.spectrogram.window

        fb = mel_spectrogram_transform.mel_scale.fb
        fb_copy = mel_spectrogram_transform_copy.mel_scale.fb

        self.assertEqual(window, window_copy)
        # the default for n_fft = 400 and n_mels = 128
        self.assertEqual(fb_copy.size(), (201, 128))
        self.assertEqual(fb, fb_copy)

    def test_mel2(self):
        top_db = 80.
        s2db = transforms.AmplitudeToDB('power', top_db)

        waveform = self.waveform.clone()  # (1, 16000)
        waveform_scaled = self.scale(waveform)  # (1, 16000)
        mel_transform = transforms.MelSpectrogram()
        # check defaults
        spectrogram_torch = s2db(mel_transform(waveform_scaled))  # (1, 128, 321)
        self.assertTrue(spectrogram_torch.dim() == 3)
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
        self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels)
        # check correctness of filterbank conversion matrix
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.).all())
        # check options
        kwargs = {'window_fn': torch.hamming_window, 'pad': 10, 'win_length': 500,
                  'hop_length': 125, 'n_fft': 800, 'n_mels': 50}
        mel_transform2 = transforms.MelSpectrogram(**kwargs)
        spectrogram2_torch = s2db(mel_transform2(waveform_scaled))  # (1, 50, 513)
        self.assertTrue(spectrogram2_torch.dim() == 3)
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
        self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.).all())
        # check on multi-channel audio
        filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
        x_stereo = common_utils.load_wav(filepath)[0]  # (2, 278756), 44100
        spectrogram_stereo = s2db(mel_transform(x_stereo))  # (2, 128, 1394)
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
        self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels)
        # check filterbank matrix creation
        fb_matrix_transform = transforms.MelScale(
            n_mels=100, sample_rate=16000, f_min=0., f_max=None, n_stft=400)
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100))

    def test_mfcc(self):
        audio_orig = self.waveform.clone()
        audio_scaled = self.scale(audio_orig)  # (1, 16000)

        sample_rate = 16000
        n_mfcc = 40
        n_mels = 128
        mfcc_transform = torchaudio.transforms.MFCC(sample_rate=sample_rate,
                                                    n_mfcc=n_mfcc,
                                                    norm='ortho')
        # check defaults
        torch_mfcc = mfcc_transform(audio_scaled)  # (1, 40, 321)
        self.assertTrue(torch_mfcc.dim() == 3)
        self.assertTrue(torch_mfcc.shape[1] == n_mfcc)
        self.assertTrue(torch_mfcc.shape[2] == 321)
        # check melkwargs are passed through
        melkwargs = {'win_length': 200}
        mfcc_transform2 = torchaudio.transforms.MFCC(sample_rate=sample_rate,
                                                     n_mfcc=n_mfcc,
                                                     norm='ortho',
                                                     melkwargs=melkwargs)
        torch_mfcc2 = mfcc_transform2(audio_scaled)  # (1, 40, 641)
        self.assertTrue(torch_mfcc2.shape[2] == 641)

        # check norms work correctly
        mfcc_transform_norm_none = torchaudio.transforms.MFCC(sample_rate=sample_rate,
                                                              n_mfcc=n_mfcc,
                                                              norm=None)
        torch_mfcc_norm_none = mfcc_transform_norm_none(audio_scaled)  # (1, 40, 321)

        norm_check = torch_mfcc.clone()
        norm_check[:, 0, :] *= math.sqrt(n_mels) * 2
        norm_check[:, 1:, :] *= math.sqrt(n_mels / 2) * 2

        self.assertTrue(torch_mfcc_norm_none.allclose(norm_check))

    def test_resample_size(self):
        input_path = common_utils.get_asset_path('sinewave.wav')
        waveform, sample_rate = common_utils.load_wav(input_path)

        upsample_rate = sample_rate * 2
        downsample_rate = sample_rate // 2
        invalid_resample = torchaudio.transforms.Resample(sample_rate, upsample_rate, resampling_method='foo')

        self.assertRaises(ValueError, invalid_resample, waveform)

        upsample_resample = torchaudio.transforms.Resample(
            sample_rate, upsample_rate, resampling_method='sinc_interpolation')
        up_sampled = upsample_resample(waveform)

        # we expect the upsampled signal to have twice as many samples
        self.assertTrue(up_sampled.size(-1) == waveform.size(-1) * 2)

        downsample_resample = torchaudio.transforms.Resample(
            sample_rate, downsample_rate, resampling_method='sinc_interpolation')
        down_sampled = downsample_resample(waveform)

        # we expect the downsampled signal to have half as many samples
        self.assertTrue(down_sampled.size(-1) == waveform.size(-1) // 2)

    def test_compute_deltas(self):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)
        transform = transforms.ComputeDeltas(win_length=win_length)
        computed = transform(specgram)
        self.assertTrue(computed.shape == specgram.shape, (computed.shape, specgram.shape))

    def test_compute_deltas_transform_same_as_functional(self, atol=1e-6, rtol=1e-8):
        channel = 13
        n_mfcc = channel * 3
        time = 1021
        win_length = 2 * 7 + 1
        specgram = torch.randn(channel, n_mfcc, time)

        transform = transforms.ComputeDeltas(win_length=win_length)
        computed_transform = transform(specgram)

        computed_functional = F.compute_deltas(specgram, win_length=win_length)
        self.assertEqual(computed_functional, computed_transform, atol=atol, rtol=rtol)

    def test_compute_deltas_twochannel(self):
        specgram = torch.tensor([1., 2., 3., 4.]).repeat(1, 2, 1)
        expected = torch.tensor([[[0.5, 1.0, 1.0, 0.5],
                                  [0.5, 1.0, 1.0, 0.5]]])
        transform = transforms.ComputeDeltas(win_length=3)
        computed = transform(specgram)
        assert computed.shape == expected.shape, (computed.shape, expected.shape)
        self.assertEqual(computed, expected, atol=1e-6, rtol=1e-8)