File: lightning.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (230 lines) | stat: -rw-r--r-- 8,983 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
from functools import partial
from typing import List

import sentencepiece as spm
import torch
import torchaudio
from common import (
    Batch,
    batch_by_token_count,
    FunctionalModule,
    GlobalStatsNormalization,
    piecewise_linear_log,
    post_process_hypos,
    spectrogram_transform,
    WarmupLR,
)
from pytorch_lightning import LightningModule
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch


class CustomDataset(torch.utils.data.Dataset):
    r"""Sort LibriSpeech samples by target length and batch to max token count."""

    def __init__(self, base_dataset, max_token_limit):
        super().__init__()
        self.base_dataset = base_dataset

        fileid_to_target_length = {}
        idx_target_lengths = [
            (idx, self._target_length(fileid, fileid_to_target_length))
            for idx, fileid in enumerate(self.base_dataset._walker)
        ]

        assert len(idx_target_lengths) > 0

        idx_target_lengths = sorted(idx_target_lengths, key=lambda x: x[1], reverse=True)

        assert max_token_limit >= idx_target_lengths[0][1]

        self.batches = batch_by_token_count(idx_target_lengths, max_token_limit)

    def _target_length(self, fileid, fileid_to_target_length):
        if fileid not in fileid_to_target_length:
            speaker_id, chapter_id, _ = fileid.split("-")

            file_text = speaker_id + "-" + chapter_id + self.base_dataset._ext_txt
            file_text = os.path.join(self.base_dataset._path, speaker_id, chapter_id, file_text)

            with open(file_text) as ft:
                for line in ft:
                    fileid_text, transcript = line.strip().split(" ", 1)
                    fileid_to_target_length[fileid_text] = len(transcript)

        return fileid_to_target_length[fileid]

    def __getitem__(self, idx):
        return [self.base_dataset[subidx] for subidx in self.batches[idx]]

    def __len__(self):
        return len(self.batches)


class LibriSpeechRNNTModule(LightningModule):
    def __init__(
        self,
        *,
        librispeech_path: str,
        sp_model_path: str,
        global_stats_path: str,
    ):
        super().__init__()

        self.model = emformer_rnnt_base(num_symbols=4097)
        self.loss = torchaudio.transforms.RNNTLoss(reduction="sum", clamp=1.0)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4, betas=(0.9, 0.999), eps=1e-8)
        self.warmup_lr_scheduler = WarmupLR(self.optimizer, 10000)

        self.train_data_pipeline = torch.nn.Sequential(
            FunctionalModule(piecewise_linear_log),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
        )
        self.valid_data_pipeline = torch.nn.Sequential(
            FunctionalModule(piecewise_linear_log),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
            FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
        )

        self.librispeech_path = librispeech_path

        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.blank_idx = self.sp_model.get_piece_size()

    def _extract_labels(self, samples: List):
        targets = [self.sp_model.encode(sample[2].lower()) for sample in samples]
        lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
        targets = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(elem) for elem in targets],
            batch_first=True,
            padding_value=1.0,
        ).to(dtype=torch.int32)
        return targets, lengths

    def _train_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.train_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _valid_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.valid_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _train_collate_fn(self, samples: List):
        features, feature_lengths = self._train_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _valid_collate_fn(self, samples: List):
        features, feature_lengths = self._valid_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _test_collate_fn(self, samples: List):
        return self._valid_collate_fn(samples), [sample[2] for sample in samples]

    def _step(self, batch, batch_idx, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        output, src_lengths, _, _ = self.model(
            batch.features,
            batch.feature_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [
                {"scheduler": self.warmup_lr_scheduler, "interval": "step"},
            ],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch_tuple, batch_idx):
        return self._step(batch_tuple[0], batch_idx, "test")

    def train_dataloader(self):
        dataset = torch.utils.data.ConcatDataset(
            [
                CustomDataset(
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-360"),
                    1000,
                ),
                CustomDataset(
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-clean-100"),
                    1000,
                ),
                CustomDataset(
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="train-other-500"),
                    1000,
                ),
            ]
        )
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._train_collate_fn,
            num_workers=10,
            shuffle=True,
        )
        return dataloader

    def val_dataloader(self):
        dataset = torch.utils.data.ConcatDataset(
            [
                CustomDataset(
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-clean"),
                    1000,
                ),
                CustomDataset(
                    torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="dev-other"),
                    1000,
                ),
            ]
        )
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._valid_collate_fn,
            num_workers=10,
        )
        return dataloader

    def test_dataloader(self):
        dataset = torchaudio.datasets.LIBRISPEECH(self.librispeech_path, url="test-clean")
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader