File: lightning.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (233 lines) | stat: -rw-r--r-- 9,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
from functools import partial
from typing import List

import sentencepiece as spm
import torch
import torchaudio
from common import (
    Batch,
    batch_by_token_count,
    FunctionalModule,
    GlobalStatsNormalization,
    piecewise_linear_log,
    post_process_hypos,
    spectrogram_transform,
    WarmupLR,
)
from pytorch_lightning import LightningModule
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch


class CustomDataset(torch.utils.data.Dataset):
    r"""Sort TEDLIUM3 samples by target length and batch to max durations."""

    def __init__(self, base_dataset, max_token_limit):
        super().__init__()
        self.base_dataset = base_dataset

        idx_target_lengths = [
            (idx, self._target_length(fileid, line)) for idx, (fileid, line) in enumerate(self.base_dataset._filelist)
        ]
        idx_target_lengths = [(idx, length) for idx, length in idx_target_lengths if length != -1]

        assert len(idx_target_lengths) > 0

        idx_target_lengths = sorted(idx_target_lengths, key=lambda x: x[1])

        assert max_token_limit >= idx_target_lengths[-1][1]

        self.batches = batch_by_token_count(idx_target_lengths, max_token_limit)

    def _target_length(self, fileid, line):
        transcript_path = os.path.join(self.base_dataset._path, "stm", fileid)
        with open(transcript_path + ".stm") as f:
            transcript = f.readlines()[line]
            _, _, _, start_time, end_time, _, transcript = transcript.split(" ", 6)
            if transcript.lower() == "ignore_time_segment_in_scoring\n":
                return -1
            else:
                return float(end_time) - float(start_time)

    def __getitem__(self, idx):
        return [self.base_dataset[subidx] for subidx in self.batches[idx]]

    def __len__(self):
        return len(self.batches)


class EvalDataset(torch.utils.data.IterableDataset):
    def __init__(self, base_dataset):
        super().__init__()
        self.base_dataset = base_dataset

    def __iter__(self):
        for sample in iter(self.base_dataset):
            actual = sample[2].replace("\n", "")
            if actual == "ignore_time_segment_in_scoring":
                continue
            yield sample


class TEDLIUM3RNNTModule(LightningModule):
    def __init__(
        self,
        *,
        tedlium_path: str,
        sp_model_path: str,
        global_stats_path: str,
    ):
        super().__init__()

        self.model = emformer_rnnt_base(num_symbols=501)
        self.loss = torchaudio.transforms.RNNTLoss(reduction="mean", clamp=1.0)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4, betas=(0.9, 0.999), eps=1e-8)
        self.warmup_lr_scheduler = WarmupLR(self.optimizer, 10000)

        self.train_data_pipeline = torch.nn.Sequential(
            FunctionalModule(piecewise_linear_log),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.FrequencyMasking(27),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            torchaudio.transforms.TimeMasking(100, p=0.2),
            FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
        )
        self.valid_data_pipeline = torch.nn.Sequential(
            FunctionalModule(piecewise_linear_log),
            GlobalStatsNormalization(global_stats_path),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
            FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
            FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
        )

        self.tedlium_path = tedlium_path

        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.blank_idx = self.sp_model.get_piece_size()

    def _extract_labels(self, samples: List):
        """Convert text transcript into int labels.

        Note:
            There are ``<unk>`` tokens in the training set that are regarded as normal tokens
            by the SentencePiece model. This will impact RNNT decoding since the decoding result
            of ``<unk>`` will be ``?? unk ??`` and will not be excluded from the final prediction.
            To address it, here we replace ``<unk>`` with ``<garbage>`` and set
            ``user_defined_symbols=["<garbage>"]`` in the SentencePiece model training.
            Then we map the index of ``<garbage>`` to the real ``unknown`` index.
        """
        targets = [
            self.sp_model.encode(sample[2].lower().replace("<unk>", "<garbage>").replace("\n", ""))
            for sample in samples
        ]
        targets = [
            [ele if ele != 4 else self.sp_model.unk_id() for ele in target] for target in targets
        ]  # map id of <unk> token to unk_id
        lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
        targets = torch.nn.utils.rnn.pad_sequence(
            [torch.tensor(elem) for elem in targets],
            batch_first=True,
            padding_value=1.0,
        ).to(dtype=torch.int32)
        return targets, lengths

    def _train_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.train_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _valid_extract_features(self, samples: List):
        mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
        features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
        features = self.valid_data_pipeline(features)
        lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
        return features, lengths

    def _train_collate_fn(self, samples: List):
        features, feature_lengths = self._train_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _valid_collate_fn(self, samples: List):
        features, feature_lengths = self._valid_extract_features(samples)
        targets, target_lengths = self._extract_labels(samples)
        return Batch(features, feature_lengths, targets, target_lengths)

    def _test_collate_fn(self, samples: List):
        return self._valid_collate_fn(samples), [sample[2] for sample in samples]

    def _step(self, batch, batch_idx, step_type):
        if batch is None:
            return None

        prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
        prepended_targets[:, 1:] = batch.targets
        prepended_targets[:, 0] = self.blank_idx
        prepended_target_lengths = batch.target_lengths + 1
        output, src_lengths, _, _ = self.model(
            batch.features,
            batch.feature_lengths,
            prepended_targets,
            prepended_target_lengths,
        )
        loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
        self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
        return loss

    def configure_optimizers(self):
        return (
            [self.optimizer],
            [
                {"scheduler": self.warmup_lr_scheduler, "interval": "step"},
            ],
        )

    def forward(self, batch: Batch):
        decoder = RNNTBeamSearch(self.model, self.blank_idx)
        hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
        return post_process_hypos(hypotheses, self.sp_model)[0][0]

    def training_step(self, batch: Batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")

    def test_step(self, batch_tuple, batch_idx):
        return self._step(batch_tuple[0], batch_idx, "test")

    def train_dataloader(self):
        dataset = CustomDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="train"), 100)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._train_collate_fn,
            num_workers=10,
            shuffle=True,
        )
        return dataloader

    def val_dataloader(self):
        dataset = CustomDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="dev"), 100)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=None,
            collate_fn=self._valid_collate_fn,
            num_workers=10,
        )
        return dataloader

    def test_dataloader(self):
        dataset = EvalDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="test"))
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader

    def dev_dataloader(self):
        dataset = EvalDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="dev"))
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
        return dataloader