1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
import os
from functools import partial
from typing import List
import sentencepiece as spm
import torch
import torchaudio
from common import (
Batch,
batch_by_token_count,
FunctionalModule,
GlobalStatsNormalization,
piecewise_linear_log,
post_process_hypos,
spectrogram_transform,
WarmupLR,
)
from pytorch_lightning import LightningModule
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch
class CustomDataset(torch.utils.data.Dataset):
r"""Sort TEDLIUM3 samples by target length and batch to max durations."""
def __init__(self, base_dataset, max_token_limit):
super().__init__()
self.base_dataset = base_dataset
idx_target_lengths = [
(idx, self._target_length(fileid, line)) for idx, (fileid, line) in enumerate(self.base_dataset._filelist)
]
idx_target_lengths = [(idx, length) for idx, length in idx_target_lengths if length != -1]
assert len(idx_target_lengths) > 0
idx_target_lengths = sorted(idx_target_lengths, key=lambda x: x[1])
assert max_token_limit >= idx_target_lengths[-1][1]
self.batches = batch_by_token_count(idx_target_lengths, max_token_limit)
def _target_length(self, fileid, line):
transcript_path = os.path.join(self.base_dataset._path, "stm", fileid)
with open(transcript_path + ".stm") as f:
transcript = f.readlines()[line]
_, _, _, start_time, end_time, _, transcript = transcript.split(" ", 6)
if transcript.lower() == "ignore_time_segment_in_scoring\n":
return -1
else:
return float(end_time) - float(start_time)
def __getitem__(self, idx):
return [self.base_dataset[subidx] for subidx in self.batches[idx]]
def __len__(self):
return len(self.batches)
class EvalDataset(torch.utils.data.IterableDataset):
def __init__(self, base_dataset):
super().__init__()
self.base_dataset = base_dataset
def __iter__(self):
for sample in iter(self.base_dataset):
actual = sample[2].replace("\n", "")
if actual == "ignore_time_segment_in_scoring":
continue
yield sample
class TEDLIUM3RNNTModule(LightningModule):
def __init__(
self,
*,
tedlium_path: str,
sp_model_path: str,
global_stats_path: str,
):
super().__init__()
self.model = emformer_rnnt_base(num_symbols=501)
self.loss = torchaudio.transforms.RNNTLoss(reduction="mean", clamp=1.0)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4, betas=(0.9, 0.999), eps=1e-8)
self.warmup_lr_scheduler = WarmupLR(self.optimizer, 10000)
self.train_data_pipeline = torch.nn.Sequential(
FunctionalModule(piecewise_linear_log),
GlobalStatsNormalization(global_stats_path),
FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
torchaudio.transforms.FrequencyMasking(27),
torchaudio.transforms.FrequencyMasking(27),
torchaudio.transforms.TimeMasking(100, p=0.2),
torchaudio.transforms.TimeMasking(100, p=0.2),
FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
)
self.valid_data_pipeline = torch.nn.Sequential(
FunctionalModule(piecewise_linear_log),
GlobalStatsNormalization(global_stats_path),
FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
FunctionalModule(partial(torch.nn.functional.pad, pad=(0, 4))),
FunctionalModule(partial(torch.transpose, dim0=1, dim1=2)),
)
self.tedlium_path = tedlium_path
self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
self.blank_idx = self.sp_model.get_piece_size()
def _extract_labels(self, samples: List):
"""Convert text transcript into int labels.
Note:
There are ``<unk>`` tokens in the training set that are regarded as normal tokens
by the SentencePiece model. This will impact RNNT decoding since the decoding result
of ``<unk>`` will be ``?? unk ??`` and will not be excluded from the final prediction.
To address it, here we replace ``<unk>`` with ``<garbage>`` and set
``user_defined_symbols=["<garbage>"]`` in the SentencePiece model training.
Then we map the index of ``<garbage>`` to the real ``unknown`` index.
"""
targets = [
self.sp_model.encode(sample[2].lower().replace("<unk>", "<garbage>").replace("\n", ""))
for sample in samples
]
targets = [
[ele if ele != 4 else self.sp_model.unk_id() for ele in target] for target in targets
] # map id of <unk> token to unk_id
lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
targets = torch.nn.utils.rnn.pad_sequence(
[torch.tensor(elem) for elem in targets],
batch_first=True,
padding_value=1.0,
).to(dtype=torch.int32)
return targets, lengths
def _train_extract_features(self, samples: List):
mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
features = self.train_data_pipeline(features)
lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
return features, lengths
def _valid_extract_features(self, samples: List):
mel_features = [spectrogram_transform(sample[0].squeeze()).transpose(1, 0) for sample in samples]
features = torch.nn.utils.rnn.pad_sequence(mel_features, batch_first=True)
features = self.valid_data_pipeline(features)
lengths = torch.tensor([elem.shape[0] for elem in mel_features], dtype=torch.int32)
return features, lengths
def _train_collate_fn(self, samples: List):
features, feature_lengths = self._train_extract_features(samples)
targets, target_lengths = self._extract_labels(samples)
return Batch(features, feature_lengths, targets, target_lengths)
def _valid_collate_fn(self, samples: List):
features, feature_lengths = self._valid_extract_features(samples)
targets, target_lengths = self._extract_labels(samples)
return Batch(features, feature_lengths, targets, target_lengths)
def _test_collate_fn(self, samples: List):
return self._valid_collate_fn(samples), [sample[2] for sample in samples]
def _step(self, batch, batch_idx, step_type):
if batch is None:
return None
prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
prepended_targets[:, 1:] = batch.targets
prepended_targets[:, 0] = self.blank_idx
prepended_target_lengths = batch.target_lengths + 1
output, src_lengths, _, _ = self.model(
batch.features,
batch.feature_lengths,
prepended_targets,
prepended_target_lengths,
)
loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
return loss
def configure_optimizers(self):
return (
[self.optimizer],
[
{"scheduler": self.warmup_lr_scheduler, "interval": "step"},
],
)
def forward(self, batch: Batch):
decoder = RNNTBeamSearch(self.model, self.blank_idx)
hypotheses = decoder(batch.features.to(self.device), batch.feature_lengths.to(self.device), 20)
return post_process_hypos(hypotheses, self.sp_model)[0][0]
def training_step(self, batch: Batch, batch_idx):
return self._step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "val")
def test_step(self, batch_tuple, batch_idx):
return self._step(batch_tuple[0], batch_idx, "test")
def train_dataloader(self):
dataset = CustomDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="train"), 100)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=None,
collate_fn=self._train_collate_fn,
num_workers=10,
shuffle=True,
)
return dataloader
def val_dataloader(self):
dataset = CustomDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="dev"), 100)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=None,
collate_fn=self._valid_collate_fn,
num_workers=10,
)
return dataloader
def test_dataloader(self):
dataset = EvalDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="test"))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
return dataloader
def dev_dataloader(self):
dataset = EvalDataset(torchaudio.datasets.TEDLIUM(self.tedlium_path, release="release3", subset="dev"))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, collate_fn=self._test_collate_fn)
return dataloader
|