1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
import argparse
import glob
import math
import os
import shutil
import warnings
import ffmpeg
from data.data_module import AVSRDataLoader
from tqdm import tqdm
from utils import save_vid_aud_txt, split_file
warnings.filterwarnings("ignore")
# Argument Parsing
parser = argparse.ArgumentParser(description="LRS3 Preprocessing")
parser.add_argument(
"--data-dir",
type=str,
help="The directory for sequence.",
)
parser.add_argument(
"--detector",
type=str,
default="retinaface",
help="Face detector used in the experiment.",
)
parser.add_argument(
"--dataset",
type=str,
help="Specify the dataset name used in the experiment",
)
parser.add_argument(
"--root-dir",
type=str,
help="The root directory of cropped-face dataset.",
)
parser.add_argument(
"--subset",
type=str,
required=True,
help="Subset of the dataset used in the experiment.",
)
parser.add_argument(
"--seg-duration",
type=int,
default=16,
help="Length of the segment in seconds.",
)
parser.add_argument(
"--groups",
type=int,
default=1,
help="Number of threads to be used in parallel.",
)
parser.add_argument(
"--job-index",
type=int,
default=0,
help="Index to identify separate jobs (useful for parallel processing).",
)
args = parser.parse_args()
seg_duration = args.seg_duration
dataset = args.dataset
args.data_dir = os.path.normpath(args.data_dir)
vid_dataloader = AVSRDataLoader(modality="video", detector=args.detector, resize=(96, 96))
aud_dataloader = AVSRDataLoader(modality="audio")
# Step 2, extract mouth patches from segments.
seg_vid_len = seg_duration * 25
seg_aud_len = seg_duration * 16000
label_filename = os.path.join(
args.root_dir,
"labels",
f"{dataset}_{args.subset}_transcript_lengths_seg{seg_duration}s.csv"
if args.groups <= 1
else f"{dataset}_{args.subset}_transcript_lengths_seg{seg_duration}s.{args.groups}.{args.job_index}.csv",
)
os.makedirs(os.path.dirname(label_filename), exist_ok=True)
print(f"Directory {os.path.dirname(label_filename)} created")
f = open(label_filename, "w")
# Step 2, extract mouth patches from segments.
dst_vid_dir = os.path.join(args.root_dir, dataset, dataset + f"_video_seg{seg_duration}s")
dst_txt_dir = os.path.join(args.root_dir, dataset, dataset + f"_text_seg{seg_duration}s")
if args.subset == "test":
filenames = glob.glob(os.path.join(args.data_dir, args.subset, "**", "*.mp4"), recursive=True)
elif args.subset == "train":
filenames = glob.glob(os.path.join(args.data_dir, "trainval", "**", "*.mp4"), recursive=True)
filenames.extend(glob.glob(os.path.join(args.data_dir, "pretrain", "**", "*.mp4"), recursive=True))
filenames.sort()
else:
raise NotImplementedError
unit = math.ceil(len(filenames) * 1.0 / args.groups)
filenames = filenames[args.job_index * unit : (args.job_index + 1) * unit]
for data_filename in tqdm(filenames):
try:
video_data = vid_dataloader.load_data(data_filename)
audio_data = aud_dataloader.load_data(data_filename)
except UnboundLocalError:
continue
if os.path.normpath(data_filename).split(os.sep)[-3] in ["trainval", "test"]:
dst_vid_filename = f"{data_filename.replace(args.data_dir, dst_vid_dir)[:-4]}.mp4"
dst_aud_filename = f"{data_filename.replace(args.data_dir, dst_vid_dir)[:-4]}.wav"
dst_txt_filename = f"{data_filename.replace(args.data_dir, dst_txt_dir)[:-4]}.txt"
trim_vid_data, trim_aud_data = video_data, audio_data
text_line_list = open(data_filename[:-4] + ".txt", "r").read().splitlines()[0].split(" ")
text_line = " ".join(text_line_list[2:])
content = text_line.replace("}", "").replace("{", "")
if trim_vid_data is None or trim_aud_data is None:
continue
video_length = len(trim_vid_data)
audio_length = trim_aud_data.size(1)
if video_length == 0 or audio_length == 0:
continue
if audio_length / video_length < 560.0 or audio_length / video_length > 720.0 or video_length < 12:
continue
save_vid_aud_txt(
dst_vid_filename,
dst_aud_filename,
dst_txt_filename,
trim_vid_data,
trim_aud_data,
content,
video_fps=25,
audio_sample_rate=16000,
)
in1 = ffmpeg.input(dst_vid_filename)
in2 = ffmpeg.input(dst_aud_filename)
out = ffmpeg.output(
in1["v"],
in2["a"],
dst_vid_filename[:-4] + ".m.mp4",
vcodec="copy",
acodec="aac",
strict="experimental",
loglevel="panic",
)
out.run()
os.remove(dst_aud_filename)
os.remove(dst_vid_filename)
shutil.move(dst_vid_filename[:-4] + ".m.mp4", dst_vid_filename)
basename = os.path.relpath(dst_vid_filename, start=os.path.join(args.root_dir, dataset))
f.write("{}\n".format(f"{dataset},{basename},{trim_vid_data.shape[0]},{len(content)}"))
continue
splitted = split_file(data_filename[:-4] + ".txt", max_frames=seg_vid_len)
for i in range(len(splitted)):
if len(splitted) == 1:
content, start, end, duration = splitted[i]
trim_vid_data, trim_aud_data = video_data, audio_data
else:
content, start, end, duration = splitted[i]
start_idx, end_idx = int(start * 25), int(end * 25)
try:
trim_vid_data, trim_aud_data = (
video_data[start_idx:end_idx],
audio_data[:, start_idx * 640 : end_idx * 640],
)
except TypeError:
continue
dst_vid_filename = f"{data_filename.replace(args.data_dir, dst_vid_dir)[:-4]}_{i:02d}.mp4"
dst_aud_filename = f"{data_filename.replace(args.data_dir, dst_vid_dir)[:-4]}_{i:02d}.wav"
dst_txt_filename = f"{data_filename.replace(args.data_dir, dst_txt_dir)[:-4]}_{i:02d}.txt"
if trim_vid_data is None or trim_aud_data is None:
continue
video_length = len(trim_vid_data)
audio_length = trim_aud_data.size(1)
if video_length == 0 or audio_length == 0:
continue
if audio_length / video_length < 560.0 or audio_length / video_length > 720.0 or video_length < 12:
continue
save_vid_aud_txt(
dst_vid_filename,
dst_aud_filename,
dst_txt_filename,
trim_vid_data,
trim_aud_data,
content,
video_fps=25,
audio_sample_rate=16000,
)
in1 = ffmpeg.input(dst_vid_filename)
in2 = ffmpeg.input(dst_aud_filename)
out = ffmpeg.output(
in1["v"],
in2["a"],
dst_vid_filename[:-4] + ".m.mp4",
vcodec="copy",
acodec="aac",
strict="experimental",
loglevel="panic",
)
out.run()
os.remove(dst_aud_filename)
os.remove(dst_vid_filename)
shutil.move(dst_vid_filename[:-4] + ".m.mp4", dst_vid_filename)
basename = os.path.relpath(dst_vid_filename, start=os.path.join(args.root_dir, dataset))
f.write("{}\n".format(f"{dataset},{basename},{trim_vid_data.shape[0]},{len(content)}"))
f.close()
|