1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
import itertools
import math
from collections import namedtuple
from typing import List, Tuple
import sentencepiece as spm
import torch
import torchaudio
from models.conformer_rnnt import conformer_rnnt
from models.emformer_rnnt import emformer_rnnt
from models.fusion import fusion_module
from models.resnet import video_resnet
from models.resnet1d import audio_resnet
from pytorch_lightning import LightningModule
from schedulers import WarmupCosineScheduler
from torchaudio.models import Hypothesis, RNNTBeamSearch
_expected_spm_vocab_size = 1023
AVBatch = namedtuple("AVBatch", ["audios", "videos", "audio_lengths", "video_lengths", "targets", "target_lengths"])
def post_process_hypos(
hypos: List[Hypothesis], sp_model: spm.SentencePieceProcessor
) -> List[Tuple[str, float, List[int], List[int]]]:
tokens_idx = 0
score_idx = 3
post_process_remove_list = [
sp_model.unk_id(),
sp_model.eos_id(),
sp_model.pad_id(),
]
filtered_hypo_tokens = [
[token_index for token_index in h[tokens_idx][1:] if token_index not in post_process_remove_list] for h in hypos
]
hypos_str = [sp_model.decode(s) for s in filtered_hypo_tokens]
hypos_ids = [h[tokens_idx][1:] for h in hypos]
hypos_score = [[math.exp(h[score_idx])] for h in hypos]
nbest_batch = list(zip(hypos_str, hypos_score, hypos_ids))
return nbest_batch
class AVConformerRNNTModule(LightningModule):
def __init__(self, args=None, sp_model=None):
super().__init__()
self.save_hyperparameters(args)
self.args = args
self.sp_model = sp_model
spm_vocab_size = self.sp_model.get_piece_size()
assert spm_vocab_size == _expected_spm_vocab_size, (
"The model returned by conformer_rnnt_base expects a SentencePiece model of "
f"vocabulary size {_expected_spm_vocab_size}, but the given SentencePiece model has a vocabulary size "
f"of {spm_vocab_size}. Please provide a correctly configured SentencePiece model."
)
self.blank_idx = spm_vocab_size
self.audio_frontend = audio_resnet()
self.video_frontend = video_resnet()
self.fusion = fusion_module()
frontend_params = [self.video_frontend.parameters(), self.audio_frontend.parameters()]
fusion_params = [self.fusion.parameters()]
if args.mode == "online":
self.model = emformer_rnnt()
if args.mode == "offline":
self.model = conformer_rnnt()
self.loss = torchaudio.transforms.RNNTLoss(reduction="sum")
self.optimizer = torch.optim.AdamW(
itertools.chain(*([self.model.parameters()] + frontend_params + fusion_params)),
lr=8e-4,
weight_decay=0.06,
betas=(0.9, 0.98),
)
def _step(self, batch, _, step_type):
if batch is None:
return None
prepended_targets = batch.targets.new_empty([batch.targets.size(0), batch.targets.size(1) + 1])
prepended_targets[:, 1:] = batch.targets
prepended_targets[:, 0] = self.blank_idx
prepended_target_lengths = batch.target_lengths + 1
video_features = self.video_frontend(batch.videos)
audio_features = self.audio_frontend(batch.audios)
output, src_lengths, _, _ = self.model(
self.fusion(torch.cat([video_features, audio_features], dim=-1)),
batch.video_lengths,
prepended_targets,
prepended_target_lengths,
)
loss = self.loss(output, batch.targets, src_lengths, batch.target_lengths)
self.log(f"Losses/{step_type}_loss", loss, on_step=True, on_epoch=True)
return loss
def configure_optimizers(self):
self.warmup_lr_scheduler = WarmupCosineScheduler(
self.optimizer,
10,
self.args.epochs,
len(self.trainer.datamodule.train_dataloader()) / self.trainer.num_devices / self.trainer.num_nodes,
)
self.lr_scheduler_interval = "step"
return (
[self.optimizer],
[{"scheduler": self.warmup_lr_scheduler, "interval": self.lr_scheduler_interval}],
)
def forward(self, batch):
decoder = RNNTBeamSearch(self.model, self.blank_idx)
video_features = self.video_frontend(batch.videos.to(self.device))
audio_features = self.audio_frontend(batch.audios.to(self.device))
hypotheses = decoder(
self.fusion(torch.cat([video_features, audio_features], dim=-1)),
batch.video_lengths.to(self.device),
beam_width=20,
)
return post_process_hypos(hypotheses, self.sp_model)[0][0]
def training_step(self, batch, batch_idx):
loss = self._step(batch, batch_idx, "train")
batch_size = batch.videos.size(0)
batch_sizes = self.all_gather(batch_size)
loss *= batch_sizes.size(0) / batch_sizes.sum() # world size / batch size
self.log("monitoring_step", torch.tensor(self.global_step, dtype=torch.float32))
return loss
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "val")
def test_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "test")
|