1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
import os
import torchaudio
import torchvision
from torch.utils.data import Dataset
def _load_list(args, *filenames):
output = []
length = []
for filename in filenames:
filepath = os.path.join(args.root_dir, "labels", filename)
for line in open(filepath).read().splitlines():
dataset, rel_path, input_length = line.split(",")[0], line.split(",")[1], line.split(",")[2]
path = os.path.normpath(os.path.join(args.root_dir, dataset, rel_path[:-4] + ".mp4"))
length.append(int(input_length))
output.append(path)
return output, length
def load_video(path):
"""
rtype: torch, T x C x H x W
"""
vid = torchvision.io.read_video(path, pts_unit="sec", output_format="THWC")[0]
vid = vid.permute((0, 3, 1, 2))
return vid
def load_audio(path):
"""
rtype: torch, T x 1
"""
waveform, sample_rate = torchaudio.load(path, normalize=True)
return waveform.transpose(1, 0)
def load_transcript(path):
transcript_path = path.replace("video_seg", "text_seg")[:-4] + ".txt"
return open(transcript_path).read().splitlines()[0]
def load_item(path, modality):
if modality == "video":
return (load_video(path), load_transcript(path))
if modality == "audio":
return (load_audio(path), load_transcript(path))
if modality == "audiovisual":
return (load_audio(path), load_video(path), load_transcript(path))
class LRS3(Dataset):
def __init__(
self,
args,
subset: str = "train",
) -> None:
if subset is not None and subset not in ["train", "val", "test"]:
raise ValueError("When `subset` is not None, it must be one of ['train', 'val', 'test'].")
self.args = args
if subset == "train":
self.files, self.lengths = _load_list(self.args, "lrs3_train_transcript_lengths_seg16s.csv")
if subset == "val":
self.files, self.lengths = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv")
if subset == "test":
self.files, self.lengths = _load_list(self.args, "lrs3_test_transcript_lengths_seg16s.csv")
def __getitem__(self, n):
path = self.files[n]
return load_item(path, self.args.modality)
def __len__(self) -> int:
return len(self.files)
|