1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
import torch
class FeedForwardModule(torch.nn.Module):
r"""Positionwise feed forward layer.
Args:
input_dim (int): input dimension.
hidden_dim (int): hidden dimension.
dropout (float, optional): dropout probability. (Default: 0.0)
"""
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, dropout: float = 0.0) -> None:
super().__init__()
self.sequential = torch.nn.Sequential(
torch.nn.LayerNorm(input_dim),
torch.nn.Linear(input_dim, hidden_dim, bias=True),
torch.nn.SiLU(),
torch.nn.Dropout(dropout),
torch.nn.Linear(hidden_dim, output_dim, bias=True),
torch.nn.Dropout(dropout),
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
r"""
Args:
input (torch.Tensor): with shape `(*, D)`.
Returns:
torch.Tensor: output, with shape `(*, D)`.
"""
return self.sequential(input)
def fusion_module(input_dim=1024, hidden_dim=3072, output_dim=512, dropout=0.1):
return FeedForwardModule(input_dim, hidden_dim, output_dim, dropout)
|