File: train.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (149 lines) | stat: -rw-r--r-- 3,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import logging
import os
from argparse import ArgumentParser

import sentencepiece as spm
from average_checkpoints import ensemble
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.strategies import DDPStrategy
from transforms import get_data_module


def get_trainer(args):
    seed_everything(1)

    checkpoint = ModelCheckpoint(
        dirpath=os.path.join(args.exp_dir, args.exp_name) if args.exp_dir else None,
        monitor="monitoring_step",
        mode="max",
        save_last=True,
        filename="{epoch}",
        save_top_k=10,
    )
    lr_monitor = LearningRateMonitor(logging_interval="step")
    callbacks = [
        checkpoint,
        lr_monitor,
    ]
    return Trainer(
        sync_batchnorm=True,
        default_root_dir=args.exp_dir,
        max_epochs=args.epochs,
        num_nodes=args.num_nodes,
        devices=args.gpus,
        accelerator="gpu",
        strategy=DDPStrategy(find_unused_parameters=False),
        callbacks=callbacks,
        reload_dataloaders_every_n_epochs=1,
        gradient_clip_val=10.0,
    )


def get_lightning_module(args):
    sp_model = spm.SentencePieceProcessor(model_file=str(args.sp_model_path))
    if args.modality == "audiovisual":
        from lightning_av import AVConformerRNNTModule

        model = AVConformerRNNTModule(args, sp_model)
    else:
        from lightning import ConformerRNNTModule

        model = ConformerRNNTModule(args, sp_model)
    return model


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "--modality",
        type=str,
        help="Modality",
        choices=["audio", "video", "audiovisual"],
        required=True,
    )
    parser.add_argument(
        "--mode",
        type=str,
        help="Perform online or offline recognition.",
        required=True,
    )
    parser.add_argument(
        "--root-dir",
        type=str,
        help="Root directory to LRS3 audio-visual datasets.",
        required=True,
    )
    parser.add_argument(
        "--sp-model-path",
        type=str,
        help="Path to SentencePiece model.",
        required=True,
    )
    parser.add_argument(
        "--pretrained-model-path",
        type=str,
        help="Path to Pretraned model.",
    )
    parser.add_argument(
        "--exp-dir",
        default="./exp",
        type=str,
        help="Directory to save checkpoints and logs to. (Default: './exp')",
    )
    parser.add_argument(
        "--exp-name",
        type=str,
        help="Experiment name",
    )
    parser.add_argument(
        "--num-nodes",
        default=4,
        type=int,
        help="Number of nodes to use for training. (Default: 4)",
    )
    parser.add_argument(
        "--gpus",
        default=8,
        type=int,
        help="Number of GPUs per node to use for training. (Default: 8)",
    )
    parser.add_argument(
        "--epochs",
        default=55,
        type=int,
        help="Number of epochs to train for. (Default: 55)",
    )
    parser.add_argument(
        "--resume-from-checkpoint",
        default=None,
        type=str,
        help="Path to the checkpoint to resume from",
    )
    parser.add_argument(
        "--debug",
        action="store_true",
        help="Whether to use debug level for logging",
    )
    return parser.parse_args()


def init_logger(debug):
    fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
    level = logging.DEBUG if debug else logging.INFO
    logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")


def cli_main():
    args = parse_args()
    init_logger(args.debug)
    model = get_lightning_module(args)
    data_module = get_data_module(args, str(args.sp_model_path))
    trainer = get_trainer(args)
    trainer.fit(model, data_module)

    ensemble(args)


if __name__ == "__main__":
    cli_main()