File: transforms.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (173 lines) | stat: -rw-r--r-- 6,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import random
from typing import List

import sentencepiece as spm
import torch
import torchvision
from data_module import LRS3DataModule
from lightning import Batch
from lightning_av import AVBatch


class FunctionalModule(torch.nn.Module):
    def __init__(self, functional):
        super().__init__()
        self.functional = functional

    def forward(self, input):
        return self.functional(input)


class AdaptiveTimeMask(torch.nn.Module):
    def __init__(self, window, stride):
        super().__init__()
        self.window = window
        self.stride = stride

    def forward(self, x):
        cloned = x.clone()
        length = cloned.size(1)
        n_mask = int((length + self.stride - 0.1) // self.stride)
        ts = torch.randint(0, self.window, size=(n_mask, 2))
        for t, t_end in ts:
            if length - t <= 0:
                continue
            t_start = random.randrange(0, length - t)
            if t_start == t_start + t:
                continue
            t_end += t_start
            cloned[:, t_start:t_end] = 0
        return cloned


def _extract_labels(sp_model, samples: List):
    targets = [sp_model.encode(sample[-1].lower()) for sample in samples]
    lengths = torch.tensor([len(elem) for elem in targets]).to(dtype=torch.int32)
    targets = torch.nn.utils.rnn.pad_sequence(
        [torch.tensor(elem) for elem in targets],
        batch_first=True,
        padding_value=1.0,
    ).to(dtype=torch.int32)
    return targets, lengths


def _extract_features(video_pipeline, audio_pipeline, samples, args):
    raw_videos = []
    raw_audios = []
    for sample in samples:
        if args.modality == "video":
            raw_videos.append(sample[0])
        if args.modality == "audio":
            raw_audios.append(sample[0])
        if args.modality == "audiovisual":
            length = min(len(sample[0]) // 640, len(sample[1]))
            raw_audios.append(sample[0][: length * 640])
            raw_videos.append(sample[1][:length])

    if args.modality == "video" or args.modality == "audiovisual":
        videos = torch.nn.utils.rnn.pad_sequence(raw_videos, batch_first=True)
        videos = video_pipeline(videos)
        video_lengths = torch.tensor([elem.shape[0] for elem in videos], dtype=torch.int32)
    if args.modality == "audio" or args.modality == "audiovisual":
        audios = torch.nn.utils.rnn.pad_sequence(raw_audios, batch_first=True)
        audios = audio_pipeline(audios)
        audio_lengths = torch.tensor([elem.shape[0] // 640 for elem in audios], dtype=torch.int32)
    if args.modality == "video":
        return videos, video_lengths
    if args.modality == "audio":
        return audios, audio_lengths
    if args.modality == "audiovisual":
        return audios, videos, audio_lengths, video_lengths


class TrainTransform:
    def __init__(self, sp_model_path: str, args):
        self.args = args
        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.train_video_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: x / 255.0),
            torchvision.transforms.RandomCrop(88),
            torchvision.transforms.RandomHorizontalFlip(0.5),
            FunctionalModule(lambda x: x.transpose(0, 1)),
            torchvision.transforms.Grayscale(),
            FunctionalModule(lambda x: x.transpose(0, 1)),
            AdaptiveTimeMask(10, 25),
            torchvision.transforms.Normalize(0.421, 0.165),
        )
        self.train_audio_pipeline = torch.nn.Sequential(
            AdaptiveTimeMask(10, 25),
        )

    def __call__(self, samples: List):
        targets, target_lengths = _extract_labels(self.sp_model, samples)
        if self.args.modality == "audio":
            audios, audio_lengths = _extract_features(
                self.train_video_pipeline, self.train_audio_pipeline, samples, self.args
            )
            return Batch(audios, audio_lengths, targets, target_lengths)
        if self.args.modality == "video":
            videos, video_lengths = _extract_features(
                self.train_video_pipeline, self.train_audio_pipeline, samples, self.args
            )
            return Batch(videos, video_lengths, targets, target_lengths)
        if self.args.modality == "audiovisual":
            audios, videos, audio_lengths, video_lengths = _extract_features(
                self.train_video_pipeline, self.train_audio_pipeline, samples, self.args
            )
            return AVBatch(audios, videos, audio_lengths, video_lengths, targets, target_lengths)


class ValTransform:
    def __init__(self, sp_model_path: str, args):
        self.args = args
        self.sp_model = spm.SentencePieceProcessor(model_file=sp_model_path)
        self.valid_video_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: x / 255.0),
            torchvision.transforms.CenterCrop(88),
            FunctionalModule(lambda x: x.transpose(0, 1)),
            torchvision.transforms.Grayscale(),
            FunctionalModule(lambda x: x.transpose(0, 1)),
            torchvision.transforms.Normalize(0.421, 0.165),
        )
        self.valid_audio_pipeline = torch.nn.Sequential(
            FunctionalModule(lambda x: x),
        )

    def __call__(self, samples: List):
        targets, target_lengths = _extract_labels(self.sp_model, samples)
        if self.args.modality == "audio":
            audios, audio_lengths = _extract_features(
                self.valid_video_pipeline, self.valid_audio_pipeline, samples, self.args
            )
            return Batch(audios, audio_lengths, targets, target_lengths)
        if self.args.modality == "video":
            videos, video_lengths = _extract_features(
                self.valid_video_pipeline, self.valid_audio_pipeline, samples, self.args
            )
            return Batch(videos, video_lengths, targets, target_lengths)
        if self.args.modality == "audiovisual":
            audios, videos, audio_lengths, video_lengths = _extract_features(
                self.valid_video_pipeline, self.valid_audio_pipeline, samples, self.args
            )
            return AVBatch(audios, videos, audio_lengths, video_lengths, targets, target_lengths)


class TestTransform:
    def __init__(self, sp_model_path: str, args):
        self.val_transforms = ValTransform(sp_model_path, args)

    def __call__(self, sample):
        return self.val_transforms([sample]), [sample]


def get_data_module(args, sp_model_path, max_frames=1800):
    train_transform = TrainTransform(sp_model_path=sp_model_path, args=args)
    val_transform = ValTransform(sp_model_path=sp_model_path, args=args)
    test_transform = TestTransform(sp_model_path=sp_model_path, args=args)
    return LRS3DataModule(
        args=args,
        train_transform=train_transform,
        val_transform=val_transform,
        test_transform=test_transform,
        max_frames=max_frames,
    )