1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
import ci_sdr
import lightning.pytorch as pl
import torch
from asteroid.losses.stoi import NegSTOILoss
from asteroid.masknn import TDConvNet
from torchaudio.transforms import InverseSpectrogram, PSD, SoudenMVDR, Spectrogram
class DNNBeamformer(torch.nn.Module):
def __init__(self, n_fft: int = 1024, hop_length: int = 256, ref_channel: int = 0):
super().__init__()
self.stft = Spectrogram(n_fft=n_fft, hop_length=hop_length, power=None)
self.istft = InverseSpectrogram(n_fft=n_fft, hop_length=hop_length)
self.mask_net = TDConvNet(
n_fft // 2 + 1,
2,
out_chan=n_fft // 2 + 1,
causal=False,
mask_act="linear",
norm_type="gLN",
)
self.beamformer = SoudenMVDR()
self.psd = PSD()
self.ref_channel = ref_channel
def forward(self, mixture) -> torch.Tensor:
spectrum = self.stft(mixture) # (batch, channel, time, freq)
batch, _, freq, time = spectrum.shape
input_feature = torch.log(spectrum[:, self.ref_channel].abs() + 1e-8) # (batch, freq, time)
mask = torch.nn.functional.relu(self.mask_net(input_feature)) # (batch, 2, freq, time)
mask_speech = mask[:, 0]
mask_noise = mask[:, 1]
psd_speech = self.psd(spectrum, mask_speech)
psd_noise = self.psd(spectrum, mask_noise)
enhanced_stft = self.beamformer(spectrum, psd_speech, psd_noise, self.ref_channel)
enhanced_waveform = self.istft(enhanced_stft, length=mixture.shape[-1])
return enhanced_waveform
class DNNBeamformerLightningModule(pl.LightningModule):
def __init__(self, model: torch.nn.Module):
super(DNNBeamformerLightningModule, self).__init__()
self.model = model
self.loss_stoi = NegSTOILoss(16000)
def training_step(self, batch, batch_idx):
mixture, clean = batch
estimate = self.model(mixture)
loss_cisdr = ci_sdr.pt.ci_sdr_loss(estimate, clean, compute_permutation=False, filter_length=512).mean()
loss_stoi = self.loss_stoi(estimate, clean).mean()
loss = loss_cisdr + loss_stoi * 10
self.log("train/loss_cisdr", loss_cisdr.item())
self.log("train/loss_stoi", loss_stoi.item())
self.log("train/loss", loss.item())
return loss
def validation_step(self, batch, batch_idx):
mixture, clean = batch
estimate = self.model(mixture)
loss_cisdr = ci_sdr.pt.ci_sdr_loss(estimate, clean, compute_permutation=False, filter_length=512).mean()
loss_stoi = self.loss_stoi(estimate, clean).mean()
loss = loss_cisdr + loss_stoi * 10
self.log("val/loss_cisdr", loss_cisdr.item())
self.log("val/loss_stoi", loss_stoi.item())
self.log("val/loss", loss.item())
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001, weight_decay=1e-8)
return {
"optimizer": optimizer,
}
|