1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
import math
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
import torchaudio
import torchaudio.models.wav2vec2.components as components
from dataset import (
_get_lengths_librilightlimited,
_get_lengths_librispeech,
BucketizeBatchSampler,
CollateFnHubert,
CollateFnLibriLightLimited,
DistributedBatchSampler,
HuBERTDataSet,
)
from lightning.pytorch import LightningModule
from loss import hubert_loss
from torch import Tensor
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
Batch = Tuple[Tensor, Tensor, Tensor]
Batch_FineTune = Tuple[Tensor, Tensor, Tensor, Tensor]
class LinearDecayLRScheduler(torch.optim.lr_scheduler._LRScheduler):
"""Linear learning rate scheduler with warm up."""
def __init__(
self,
optimizer: Optimizer,
warmup_updates: int,
max_updates: int,
last_epoch: int = -1,
verbose: bool = False,
):
self.warmup_updates = warmup_updates
self.max_updates = max_updates
super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)
def get_lr(self):
if self._step_count <= self.warmup_updates:
return [self._step_count / self.warmup_updates * base_lr for base_lr in self.base_lrs]
elif self._step_count >= self.max_updates:
return [0.0 for _ in self.base_lrs]
else:
pct_remaining = (self.max_updates - self._step_count) / (self.max_updates - self.warmup_updates)
return [base_lr * pct_remaining for base_lr in self.base_lrs]
class TriStageLRScheduler(torch.optim.lr_scheduler._LRScheduler):
"""Linear learning rate scheduler with warmup, hold, and decay."""
def __init__(
self,
optimizer: Optimizer,
warmup_updates: int,
hold_updates: int,
decay_updates: int,
init_lr_scale: float = 0.01,
final_lr_scale: float = 0.05,
last_epoch: int = -1,
verbose: bool = False,
):
self.warmup_updates = warmup_updates
self.hold_updates = hold_updates
self.decay_updates = decay_updates
self.init_lr_scale = init_lr_scale
self.final_lr_scale = final_lr_scale
super().__init__(optimizer, last_epoch=last_epoch, verbose=verbose)
def get_lr(self):
if self._step_count <= self.warmup_updates:
return [
base_lr * (self.init_lr_scale + self._step_count / self.warmup_updates * (1 - self.init_lr_scale))
for base_lr in self.base_lrs
]
elif self.warmup_updates < self._step_count <= (self.warmup_updates + self.hold_updates):
return list(self.base_lrs)
elif self._step_count <= (self.warmup_updates + self.hold_updates + self.decay_updates):
return [
base_lr
* math.exp(
math.log(self.final_lr_scale)
* (self._step_count - self.warmup_updates - self.hold_updates)
/ self.decay_updates
)
for base_lr in self.base_lrs
]
else:
return [base_lr * self.final_lr_scale for base_lr in self.base_lrs]
def _compute_accuracy(logits: torch.Tensor):
with torch.no_grad():
max = logits.argmax(-1) == 0
min = logits.argmin(-1) == 0
both = max & min
corr = max.long().sum().item() - both.long().sum().item()
count = max.numel()
return corr, count
def _reset_stats():
return {
"train": {
"correct": 0.0,
"count": 0.0,
},
"val": {
"correct": 0.0,
"count": 0.0,
},
}
class HuBERTPreTrainModule(LightningModule):
def __init__(
self,
*,
model_name: str,
feature_grad_mult: float,
num_classes: int,
dataset: str,
dataset_path: str,
feature_type: str,
seconds_per_batch: float,
learning_rate: float,
betas: Tuple[float, float],
eps: float,
weight_decay: float,
clip_norm: Optional[float],
warmup_updates: int,
max_updates: int,
):
super().__init__()
if model_name == "hubert_pretrain_base":
self.model = torchaudio.models.hubert_pretrain_base(
feature_grad_mult=feature_grad_mult, num_classes=num_classes
)
elif model_name == "hubert_pretrain_large":
self.model = torchaudio.models.hubert_pretrain_large()
elif model_name == "hubert_pretrain_xlarge":
self.model = torchaudio.models.hubert_pretrain_xlarge()
else:
raise ValueError(f"Unsupported model name: {model_name}")
self.automatic_optimization = False
self.scaler = torch.cuda.amp.GradScaler()
self.loss = hubert_loss
self.optimizer = torch.optim.AdamW(
self.model.parameters(), lr=learning_rate, betas=betas, eps=eps, weight_decay=weight_decay
)
self.clip_norm = clip_norm
self.lr_scheduler = LinearDecayLRScheduler(self.optimizer, warmup_updates, max_updates)
self.dataset = dataset
self.dataset_path = dataset_path
self.feature_type = feature_type
self.seconds_per_batch = seconds_per_batch
self.mask_stats = _reset_stats()
self.unmask_stats = _reset_stats()
self.nan_loss_count = 0.0
def _step(self, batch: Batch, batch_idx, step_type):
if batch is None:
return None, None
waveforms, labels, audio_lengths = batch
if step_type == "val":
with torch.no_grad():
logit_m, logit_u, feature_penalty = self.model(
waveforms,
labels,
audio_lengths,
)
else:
logit_m, logit_u, feature_penalty = self.model(
waveforms,
labels,
audio_lengths,
)
loss = self.loss(logit_m, logit_u, feature_penalty)
if not torch.isinf(loss) and not torch.isnan(loss):
self.log(f"{step_type}_loss", loss.item() / logit_m.size(0), on_step=True, on_epoch=True)
else:
self.nan_loss_count += 1
self.log("nan_loss_count", self.nan_loss_count, on_step=True, on_epoch=True)
# log accuracies of masked and unmasked frames
correct_m, count_m = _compute_accuracy(logit_m)
correct_u, count_u = _compute_accuracy(logit_u)
self.mask_stats[step_type]["correct"] += correct_m
self.mask_stats[step_type]["count"] += count_m
self.unmask_stats[step_type]["correct"] += correct_u
self.unmask_stats[step_type]["count"] += count_u
self.log(
f"{step_type}_masked_accuracy",
self.mask_stats[step_type]["correct"] / self.mask_stats[step_type]["count"],
on_step=True,
on_epoch=True,
sync_dist=True,
prog_bar=step_type == "train",
)
self.log(
f"{step_type}_unmasked_accuracy",
self.unmask_stats[step_type]["correct"] / self.unmask_stats[step_type]["count"],
on_step=True,
on_epoch=True,
sync_dist=True,
prog_bar=step_type == "train",
)
return loss, logit_m.size(0)
def configure_optimizers(self):
return (
[self.optimizer],
[
{
"scheduler": self.lr_scheduler,
"interval": "step",
},
],
)
def training_step(self, batch: Batch, batch_idx):
"""Custom training step with loss normalization and automatic mixed precision training.
By default, DDP does the following on each train step:
- For each GPU, compute loss and gradient on shard of training data.
- Sync and average gradients across all GPUs. The final gradient
is (sum of gradients across all GPUs) / N, where N is the world
size (total number of GPUs).
- Update parameters on each GPU.
Here, we do the following:
- For k-th GPU, compute loss and scale it by (N / num_frames), where num_frames is
the sum of masked frames across all GPUs. Compute gradient from scaled loss.
- Sync and average gradients across all GPUs. The final gradient
is (sum of gradients across all GPUs) / num_frames.
- Update parameters on each GPU.
Doing so allows us to account for the variability in number of masked frames in
variable-length sequential data.
"""
opt = self.optimizers()
opt.zero_grad()
with torch.cuda.amp.autocast(enabled=True):
loss, num_frame = self._step(batch, batch_idx, "train")
if torch.isinf(loss) or torch.isnan(loss):
opt.zero_grad()
return None
# normalize the loss based on the sum of num_frame across all GPUs
num_frames = self.all_gather(num_frame)
self.log("Gathered number of frames", num_frames.float().sum(), on_step=True, on_epoch=True)
loss *= num_frames.size(0) / num_frames.sum() # world size / num_frames
# backward the loss and clip the gradients
loss = self.scaler.scale(loss)
self.manual_backward(loss)
self.scaler.unscale_(opt)
if self.clip_norm is not None:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip_norm)
# optimization
self.scaler.step(opt)
sch = self.lr_schedulers()
sch.step()
self.scaler.update()
return loss
def validation_step(self, batch: Batch, batch_idx):
return self._step(batch, batch_idx, "val")[0]
def on_validation_end(self):
self.mask_stats = _reset_stats()
self.unmask_stats = _reset_stats()
def train_dataloader(self):
dataset = HuBERTDataSet(self.dataset_path, self.dataset, "train")
sampler = BucketizeBatchSampler(
dataset.len_list,
num_buckets=1000,
max_token_count=self.seconds_per_batch * 16000,
min_len=32000,
max_len=250000,
shuffle=True,
seed=self.trainer.current_epoch,
)
sampler = DistributedBatchSampler(sampler, shuffle=True)
sampler.set_epoch(self.current_epoch)
dataloader = DataLoader(
dataset,
batch_sampler=sampler,
collate_fn=CollateFnHubert(feature_type=self.feature_type, pad=False, rand_crop=True),
num_workers=10,
)
return dataloader
def val_dataloader(self):
dataset = HuBERTDataSet(self.dataset_path, self.dataset, "valid")
sampler = BucketizeBatchSampler(
dataset.len_list,
num_buckets=1000,
max_token_count=self.seconds_per_batch * 16000,
min_len=32000,
max_len=250000,
shuffle=False,
)
dataloader = DataLoader(
dataset,
batch_sampler=sampler,
collate_fn=CollateFnHubert(feature_type=self.feature_type, pad=False, rand_crop=True),
num_workers=10,
)
return dataloader
class HuBERTFineTuneModule(LightningModule):
def __init__(
self,
*,
model_name: str,
encoder_projection_dropout: float,
encoder_attention_dropout: float,
encoder_ff_interm_dropout: float,
encoder_dropout: float,
encoder_layer_drop: float,
mask_prob: float,
mask_channel_prob: float,
mask_channel_length: float,
num_classes: int,
aux_num_out: int,
checkpoint: str,
dataset_path: str,
seconds_per_batch: float,
subset: str,
learning_rate: float,
betas: Tuple[float, float],
adam_eps: float,
weight_decay: float,
freeze_encoder_updates: int,
warmup_updates: int,
hold_updates: int,
decay_updates: int,
):
super().__init__()
if model_name == "hubert_pretrain_base":
self.model = torchaudio.models.hubert_pretrain_base(
encoder_projection_dropout=encoder_projection_dropout,
encoder_attention_dropout=encoder_attention_dropout,
encoder_ff_interm_dropout=encoder_ff_interm_dropout,
encoder_dropout=encoder_dropout,
encoder_layer_drop=encoder_layer_drop,
mask_prob=mask_prob,
mask_channel_prob=mask_channel_prob,
mask_channel_length=mask_channel_length,
num_classes=num_classes,
)
self.aux = torch.nn.Linear(768, aux_num_out)
elif model_name == "hubert_pretrain_large":
self.model = torchaudio.models.hubert_pretrain_large(
encoder_projection_dropout=encoder_projection_dropout,
encoder_attention_dropout=encoder_attention_dropout,
encoder_ff_interm_dropout=encoder_ff_interm_dropout,
encoder_dropout=encoder_dropout,
encoder_layer_drop=encoder_layer_drop,
mask_prob=mask_prob,
mask_channel_prob=mask_channel_prob,
mask_channel_length=mask_channel_length,
num_classes=num_classes,
)
self.aux = torch.nn.Linear(1024, aux_num_out)
elif model_name == "hubert_pretrain_xlarge":
self.model = torchaudio.models.hubert_pretrain_xlarge(
encoder_projection_dropout=encoder_projection_dropout,
encoder_attention_dropout=encoder_attention_dropout,
encoder_ff_interm_dropout=encoder_ff_interm_dropout,
encoder_dropout=encoder_dropout,
encoder_layer_drop=encoder_layer_drop,
mask_prob=mask_prob,
mask_channel_prob=mask_channel_prob,
mask_channel_length=mask_channel_length,
num_classes=num_classes,
)
self.aux = torch.nn.Linear(1280, aux_num_out)
else:
raise ValueError(f"Unsupported model name: {model_name}.")
self._load_checkpoint(checkpoint)
for p in self.model.wav2vec2.feature_extractor.parameters():
p.requires_grad = False
self.loss_fn = torch.nn.CTCLoss(blank=0, reduction="sum", zero_infinity=True)
self.optimizer = torch.optim.AdamW(
list(self.aux.parameters()) + list(self.model.parameters()),
lr=learning_rate,
betas=betas,
eps=adam_eps,
weight_decay=weight_decay,
)
self.freeze_encoder_updates = freeze_encoder_updates
self.lr_scheduler = TriStageLRScheduler(self.optimizer, warmup_updates, hold_updates, decay_updates)
self.dataset_path = dataset_path
self.seconds_per_batch = seconds_per_batch
self.subset = subset
self.automatic_optimization = False
self.scaler = torch.cuda.amp.GradScaler()
def _load_checkpoint(self, checkpoint):
# load pretrain model from checkpoint
state_dict = torch.load(checkpoint, map_location=torch.device("cpu"))
state_dict = state_dict["state_dict"]
s = {}
for k in state_dict:
if "model." in k:
s[k.replace("model.", "")] = state_dict[k]
self.model.load_state_dict(s)
def _step(self, batch: Batch_FineTune, batch_idx, step_type):
if batch is None:
return None
waveforms, labels, audio_lengths, label_lengths = batch
if self.global_step <= self.freeze_encoder_updates:
with torch.no_grad():
x, out_len = self.model.wav2vec2.feature_extractor(waveforms, audio_lengths)
padding_mask = components._get_padding_mask(x, out_len)
x, attention_mask = self.model.wav2vec2.encoder._preprocess(x, out_len)
x, _ = self.model.mask_generator(x, padding_mask)
x = self.model.wav2vec2.encoder.transformer(x, attention_mask=attention_mask)
else:
with torch.no_grad():
x, out_len = self.model.wav2vec2.feature_extractor(waveforms, audio_lengths)
padding_mask = components._get_padding_mask(x, out_len)
x, attention_mask = self.model.wav2vec2.encoder._preprocess(x, out_len)
x, _ = self.model.mask_generator(x, padding_mask)
x = self.model.wav2vec2.encoder.transformer(x, attention_mask=attention_mask)
logits = self.aux(x)
log_probs = F.log_softmax(logits, dim=-1)
log_probs = log_probs.transpose(0, 1)
loss = self.loss_fn(
log_probs,
labels,
out_len,
label_lengths,
)
self.log(f"{step_type}_loss", loss.item() / waveforms.size(0), on_step=True, on_epoch=True)
return loss
def configure_optimizers(self):
return (
[
self.optimizer,
],
[
{"scheduler": self.lr_scheduler, "interval": "step"},
],
)
def training_step(self, batch: Batch_FineTune, batch_idx):
"""Custom training step with loss normalization and automatic mixed precision training.
By default, DDP does the following on each train step:
- For each GPU, compute loss and gradient on shard of training data.
- Sync and average gradients across all GPUs. The final gradient
is (sum of gradients across all GPUs) / N, where N is the world
size (total number of GPUs).
- Update parameters on each GPU.
Here, we do the following:
- For k-th GPU, compute loss and scale it by (N / B_total), where B_total is
the sum of batch sizes across all GPUs. Compute gradient from scaled loss.
- Sync and average gradients across all GPUs. The final gradient
is (sum of gradients across all GPUs) / B_total.
- Update parameters on each GPU.
Doing so allows us to account for the variability in batch sizes that
variable-length sequential data commonly yields.
"""
opt = self.optimizers()
opt.zero_grad()
with torch.cuda.amp.autocast(enabled=True):
loss = self._step(batch, batch_idx, "train")
# normalize the loss based on the sum of batch_sie across all GPUs
batch_size = batch[0].size(0)
batch_sizes = self.all_gather(batch_size)
self.log("Gathered batch size", batch_sizes.sum(), on_step=True, on_epoch=True)
loss *= batch_sizes.size(0) / batch_sizes.sum() # world size / batch size
# backward the loss and clip the gradients
loss = self.scaler.scale(loss)
self.manual_backward(loss)
self.scaler.unscale_(opt)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5.0)
# optimization
self.scaler.step(opt)
sch = self.lr_schedulers()
sch.step()
self.scaler.update()
def validation_step(self, batch: Batch_FineTune, batch_idx):
return self._step(batch, batch_idx, "val")
def train_dataloader(self):
dataset = torchaudio.datasets.LibriLightLimited(self.dataset_path, self.subset)
lengths = _get_lengths_librilightlimited(dataset._fileids_paths, dataset._path, dataset._ext_audio)
sampler = BucketizeBatchSampler(
lengths,
num_buckets=100,
max_token_count=self.seconds_per_batch * 16000,
shuffle=True,
seed=self.global_step,
)
sampler = DistributedBatchSampler(sampler, shuffle=True)
sampler.set_epoch(self.global_step)
dataloader = DataLoader(
dataset,
batch_sampler=sampler,
collate_fn=CollateFnLibriLightLimited(),
num_workers=10,
)
return dataloader
def val_dataloader(self):
dataset = torchaudio.datasets.LIBRISPEECH(self.dataset_path, "dev-other")
lengths = _get_lengths_librispeech(dataset._walker, dataset._path, dataset._ext_audio)
sampler = BucketizeBatchSampler(
lengths, num_buckets=100, max_token_count=self.seconds_per_batch * 16000, shuffle=False
)
dataloader = DataLoader(
dataset,
batch_sampler=sampler,
collate_fn=CollateFnLibriLightLimited(),
num_workers=10,
)
return dataloader
|