1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
#!/usr/bin/env python3
"""Train the HuBERTPretrainModel by using labels generated by KMeans clustering.
Example:
python train.py --dataset-path ./exp/data/mfcc/ --feature-type mfcc --num-classes 100
"""
import logging
import pathlib
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, RawDescriptionHelpFormatter
from typing import Tuple
from lightning.pytorch import seed_everything, Trainer
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning_modules import HuBERTPreTrainModule
logger = logging.getLogger(__name__)
class _Formatter(ArgumentDefaultsHelpFormatter, RawDescriptionHelpFormatter):
# To use ArgumentDefaultsHelpFormatter as the formatter_class and
# RawDescriptionHelpFormatter to add custom formatting to description or epilog.
# Check: https://stackoverflow.com/a/18462760
pass
def run_train(args):
seed_everything(1337)
checkpoint_dir = args.exp_dir / f"checkpoints_{args.dataset}_{args.model_name}"
checkpoint = ModelCheckpoint(
checkpoint_dir,
monitor="val_loss",
mode="min",
save_top_k=5,
save_weights_only=False,
verbose=True,
)
train_checkpoint = ModelCheckpoint(
checkpoint_dir,
monitor="train_loss",
mode="min",
save_top_k=5,
save_weights_only=False,
verbose=True,
)
callbacks = [
checkpoint,
train_checkpoint,
]
trainer = Trainer(
default_root_dir=args.exp_dir,
max_steps=args.max_updates,
num_nodes=args.num_nodes,
devices=args.gpus,
accelerator="gpu",
strategy="ddp_find_unused_parameters_true",
use_distributed_sampler=False,
callbacks=callbacks,
reload_dataloaders_every_n_epochs=1,
)
model = HuBERTPreTrainModule(
model_name=args.model_name,
feature_grad_mult=args.feature_grad_mult,
num_classes=args.num_classes,
dataset=args.dataset,
dataset_path=args.dataset_path,
feature_type=args.feature_type,
seconds_per_batch=args.seconds_per_batch,
learning_rate=args.learning_rate,
betas=args.betas,
eps=args.eps,
weight_decay=args.weight_decay,
clip_norm=args.clip_norm,
warmup_updates=args.warmup_updates,
max_updates=args.max_updates,
)
trainer.fit(model, ckpt_path=args.resume_checkpoint)
def _parse_args():
parser = ArgumentParser(
description=__doc__,
formatter_class=_Formatter,
)
parser.add_argument(
"--dataset-path",
type=pathlib.Path,
required=True,
help="Path to the feature and label directories.",
)
parser.add_argument(
"--resume-checkpoint",
type=pathlib.Path,
default=None,
help="Path to the feature and label directories. (Default: None)",
)
parser.add_argument(
"--feature-type",
choices=["mfcc", "hubert"],
type=str,
required=True,
)
parser.add_argument(
"--feature-grad-mult",
default=0.1,
type=float,
help="The scaling factor to multiply the feature extractor gradient. (Default: 0.1)",
)
parser.add_argument(
"--num-classes",
choices=[100, 500],
type=int,
required=True,
help="The ``num_class`` when building the hubert_pretrain_base model.",
)
parser.add_argument(
"--model-name",
default="hubert_pretrain_base",
choices=["hubert_pretrain_base", "hubert_pretrain_large", "hubert_pretrain_xlarge"],
type=str,
help="The HuBERT model to train. (Default: 'hubert_pretrain_base')",
)
parser.add_argument(
"--exp-dir",
default=pathlib.Path("./exp"),
type=pathlib.Path,
help="Directory to save checkpoints and logs to. (Default: './exp')",
)
parser.add_argument(
"--dataset",
default="librispeech",
choices=["librispeech", "librilight"],
type=str,
help="The dataset for training. (Default: 'librispeech')",
)
parser.add_argument(
"--learning-rate",
default=0.0005,
type=float,
help="The peak learning rate. (Default: 0.0005)",
)
parser.add_argument(
"--betas",
default=(0.9, 0.98),
type=Tuple,
help="The coefficients for computing running averages of gradient and its square (Default: (0.9, 0.98))",
)
parser.add_argument(
"--eps",
default=1e-6,
type=float,
help="Epsilon value in Adam optimizer. (Default: 1e-6)",
)
parser.add_argument(
"--weight-decay",
default=0.01,
type=float,
help="Weight decay (L2 penalty) (default: 0.01)",
)
parser.add_argument(
"--clip-norm",
default=10.0,
type=float,
help="The gradient norm value to clip. (Default: 10.0)",
)
parser.add_argument(
"--num-nodes",
default=4,
type=int,
help="Number of nodes to use for training. (Default: 4)",
)
parser.add_argument(
"--gpus",
default=8,
type=int,
help="Number of GPUs per node to use for training. (Default: 8)",
)
parser.add_argument(
"--warmup-updates",
default=32000,
type=int,
help="Number of steps for warm up the learning rate. (Default: 32000)",
)
parser.add_argument(
"--max-updates",
default=250000,
type=int,
help="Total number of training steps. (Default: 250000)",
)
parser.add_argument(
"--seconds-per-batch",
default=87.5,
type=float,
help="Number of seconds of audio in a mini-batch. (Default: 87.5)",
)
parser.add_argument("--debug", action="store_true", help="whether to use debug level for logging")
return parser.parse_args()
def _init_logger(debug):
fmt = "%(asctime)s %(message)s" if debug else "%(message)s"
level = logging.DEBUG if debug else logging.INFO
logging.basicConfig(format=fmt, level=level, datefmt="%Y-%m-%d %H:%M:%S")
def cli_main():
args = _parse_args()
_init_logger(args.debug)
run_train(args)
if __name__ == "__main__":
cli_main()
|