File: README.md

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (258 lines) | stat: -rw-r--r-- 8,665 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
This is an example pipeline for text-to-speech using Tacotron2.

Here is a [colab example](https://colab.research.google.com/drive/1MPcn1_G5lKozxZ7v8b9yucOD5X5cLK4j?usp=sharing)
that shows how the text-to-speech pipeline is used during inference with the built-in pretrained models.

## Install required packages

Required packages
```bash
pip install librosa tqdm inflect joblib
```

To use tensorboard
```bash
pip install tensorboard pillow
```

## Training Tacotron2 with character as input

The training of Tacotron2 can be invoked with the following command.

```bash
python train.py \
    --learning-rate 1e-3 \
    --epochs 1501 \
    --anneal-steps 500 1000 1500 \
    --anneal-factor 0.1 \
    --batch-size 96 \
    --weight-decay 1e-6 \
    --grad-clip 1.0 \
    --text-preprocessor english_characters \
    --logging-dir ./logs \
    --checkpoint-path ./ckpt.pth \
    --dataset-path ./
```

The training script will use all GPUs that is available, please set the
environment variable `CUDA_VISIBLE_DEVICES` if you don't want all GPUs to be used.
The newest checkpoint will be saved to `./ckpt.pth` and the checkpoint with the best validation
loss will be saved to `./best_ckpt.pth`.
The training log will be saved to `./logs/train.log` and the tensorboard results will also
be in `./logs`.

If `./ckpt.pth` already exist, this script will automatically load the file and try to continue
training from the checkpoint.

This command takes around 36 hours to train on 8 NVIDIA Tesla V100 GPUs.

To train the Tacotron2 model to work with the [pretrained wavernn](https://pytorch.org/audio/main/models.html#id10)
with checkpoint_name `"wavernn_10k_epochs_8bits_ljspeech"`, please run the following command instead.

```bash
python train.py
    --learning-rate 1e-3 \
    --epochs 1501 \
    --anneal-steps 500 1000 1500 \
    --anneal-factor 0.1 \
    --sample-rate 22050 \
    --n-fft 2048 \
    --hop-length 275 \
    --win-length 1100 \
    --mel-fmin 40 \
    --mel-fmax 11025 \
    --batch-size 96 \
    --weight-decay 1e-6 \
    --grad-clip 1.0 \
    --text-preprocessor english_characters \
    --logging-dir ./wavernn_logs \
    --checkpoint-path ./ckpt_wavernn.pth \
    --dataset-path ./
```


## Training Tacotron2 with phoneme as input

#### Dependencies

This example use the [DeepPhonemizer](https://github.com/as-ideas/DeepPhonemizer) as
the phonemizer (the function to turn text into phonemes),
please install it with the following command (the code is tested with version 0.0.15).

```bash
pip install deep-phonemizer==0.0.15
```

Then download the model weights from [their website](https://github.com/as-ideas/DeepPhonemizer)

The link to the checkpoint that is tested with this example is
[https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_forward.pt](https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_forward.pt).

#### Running training script

The training of Tacotron2 with english phonemes as input can be invoked with the following command.

```bash
python train.py \
    --workers 12 \
    --learning-rate 1e-3 \
    --epochs 1501 \
    --anneal-steps 500 1000 1500 \
    --anneal-factor 0.1 \
    --batch-size 96 \
    --weight-decay 1e-6 \
    --grad-clip 1.0 \
    --text-preprocessor english_phonemes \
    --phonemizer DeepPhonemizer \
    --phonemizer-checkpoint ./en_us_cmudict_forward.pt \
    --cmudict-root ./ \
    --logging-dir ./english_phonemes_logs \
    --checkpoint-path ./english_phonemes_ckpt.pth \
    --dataset-path ./
```

Similar to the previous examples, this command will save the log in the directory `./english_phonemes_logs`
and the checkpoint will be saved to `./english_phonemes_ckpt.pth`.


To train the Tacotron2 model with english phonemes that works with the
[pretrained wavernn](https://pytorch.org/audio/main/models.html#id10)
with checkpoint_name `"wavernn_10k_epochs_8bits_ljspeech"`, please run the following command.

```bash
python train.py \
    --workers 12 \
    --learning-rate 1e-3 \
    --epochs 1501 \
    --anneal-steps 500 1000 1500 \
    --anneal-factor 0.1 \
    --sample-rate 22050 \
    --n-fft 2048 \
    --hop-length 275 \
    --win-length 1100 \
    --mel-fmin 40 \
    --mel-fmax 11025 \
    --batch-size 96 \
    --weight-decay 1e-6 \
    --grad-clip 1.0 \
    --text-preprocessor english_phonemes \
    --phonemizer DeepPhonemizer \
    --phonemizer-checkpoint ./en_us_cmudict_forward.pt \
    --cmudict-root ./ \
    --logging-dir ./english_phonemes_wavernn_logs \
    --checkpoint-path ./english_phonemes_wavernn_ckpt.pth \
    --dataset-path ./
```


## Text-to-speech pipeline

Here we present an example of how to use Tacotron2 to generate audio from text.
The text-to-speech pipeline goes as follows:
1. text preprocessing: encoder the text into list of symbols (the symbols can represent characters, phonemes, etc.)
2. spectrogram generation: after retrieving the list of symbols, we feed this list to a Tacotron2 model and the model
will output the mel spectrogram.
3. time-domain conversion: when the mel spectrogram is generated, we need to convert it into audio with a vocoder.
Currently, there are three vocoders being supported in this script, which includes the
[WaveRNN](https://pytorch.org/audio/stable/models/wavernn.html),
[Griffin-Lim](https://pytorch.org/audio/stable/transforms.html#griffinlim), and
[Nvidia's WaveGlow](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/).

The spectro parameters including `n-fft`, `mel-fmin`, `mel-fmax` should be set to the values
used during the training of Tacotron2.


#### Pretrained WaveRNN as the Vocoder

The following command will generate a waveform to `./outputs.wav`
with the text "Hello world!" using WaveRNN as the vocoder.

```bash
python inference.py --checkpoint-path ${model_path} \
    --vocoder wavernn \
    --n-fft 2048 \
    --mel-fmin 40 \
    --mel-fmax 11025 \
    --input-text "Hello world!" \
    --text-preprocessor english_characters \
    --output-path "./outputs.wav"
```

If you want to generate a waveform with a different text with phonemes
as the input to Tacotron2, please use the `--text-preprocessor english_phonemes`.
The following is an example.
(Remember to install the [DeepPhonemizer](https://github.com/as-ideas/DeepPhonemizer)
and download their pretrained weights.

```bash
python inference.py --checkpoint-path ${model_path} \
    --vocoder wavernn \
    --n-fft 2048 \
    --mel-fmin 40 \
    --mel-fmax 11025 \
    --input-text "Hello world!" \
    --text-preprocessor english_phonemes \
    --phonimizer DeepPhonemizer \
    --phoimizer-checkpoint ./en_us_cmudict_forward.pt \
    --cmudict-root ./ \
    --output-path "./outputs.wav"
```

To use torchaudio pretrained models, please see the following example command.
For Tacotron2, we use the checkpoint named `"tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech"`, and
for WaveRNN, we use the checkpoint named `"wavernn_10k_epochs_8bits_ljspeech"`.
See https://pytorch.org/audio/stable/models.html for more checkpoint options for Tacotron2 and WaveRNN.

```bash
python inference.py \
    --checkpoint-path tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech \
    --wavernn-checkpoint-path wavernn_10k_epochs_8bits_ljspeech \
    --vocoder wavernn \
    --n-fft 2048 \
    --mel-fmin 40 \
    --mel-fmax 11025 \
    --input-text "Hello world!" \
    --text-preprocessor english_phonemes \
    --phonimizer DeepPhonemizer \
    --phoimizer-checkpoint ./en_us_cmudict_forward.pt \
    --cmudict-root ./ \
    --output-path "./outputs.wav"
```

#### Griffin-Lim's algorithm as the Vocoder

The following command will generate a waveform to `./outputs.wav`
with the text "Hello world!" using Griffin-Lim's algorithm as the vocoder.

```bash
python inference.py --checkpoint-path ${model_path} \
    --vocoder griffin_lim \
    --n-fft 1024 \
    --mel-fmin 0 \
    --mel-fmax 8000 \
    --input-text "Hello world!" \
    --text-preprocessor english_characters \
    --output-path "./outputs.wav"
```


#### Nvidia's Waveglow as the Vocoder

The following command will generate a waveform to `./outputs.wav`
with the text `"Hello world!"` using Nvidia's WaveGlow as the vocoder.
The WaveGlow is loaded using the following torchhub's API.

```python
torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_waveglow', model_math='fp16')
```

```bash
python inference.py --checkpoint-path ${model_path} \
    --vocoder nvidia_waveglow \
    --n-fft 1024 \
    --mel-fmin 0 \
    --mel-fmax 8000 \
    --input-text "Hello world!" \
    --text-preprocessor english_characters \
    --output-path "./outputs.wav"
```