File: datasets.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (172 lines) | stat: -rw-r--r-- 7,281 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************

from typing import Callable, List, Tuple

import torch
from torch import Tensor
from torch.utils.data.dataset import random_split
from torchaudio.datasets import LJSPEECH


class SpectralNormalization(torch.nn.Module):
    def forward(self, input):
        return torch.log(torch.clamp(input, min=1e-5))


class InverseSpectralNormalization(torch.nn.Module):
    def forward(self, input):
        return torch.exp(input)


class MapMemoryCache(torch.utils.data.Dataset):
    r"""Wrap a dataset so that, whenever a new item is returned, it is saved to memory."""

    def __init__(self, dataset):
        self.dataset = dataset
        self._cache = [None] * len(dataset)

    def __getitem__(self, n):
        if self._cache[n] is not None:
            return self._cache[n]

        item = self.dataset[n]
        self._cache[n] = item

        return item

    def __len__(self):
        return len(self.dataset)


class Processed(torch.utils.data.Dataset):
    def __init__(self, dataset, transforms, text_preprocessor):
        self.dataset = dataset
        self.transforms = transforms
        self.text_preprocessor = text_preprocessor

    def __getitem__(self, key):
        item = self.dataset[key]
        return self.process_datapoint(item)

    def __len__(self):
        return len(self.dataset)

    def process_datapoint(self, item):
        melspec = self.transforms(item[0])
        text_norm = torch.IntTensor(self.text_preprocessor(item[2]))
        return text_norm, torch.squeeze(melspec, 0)


def split_process_dataset(
    dataset: str,
    file_path: str,
    val_ratio: float,
    transforms: Callable,
    text_preprocessor: Callable[[str], List[int]],
) -> Tuple[torch.utils.data.Dataset, torch.utils.data.Dataset]:
    """Returns the Training and validation datasets.

    Args:
        dataset (str): The dataset to use. Available options: [`'ljspeech'`]
        file_path (str): Path to the data.
        val_ratio (float): Path to the data.
        transforms (callable): A function/transform that takes in a waveform and
            returns a transformed waveform (mel spectrogram in this example).
        text_preprocess (callable): A function that takes in a string and
            returns a list of integers representing each of the symbol in the string.

    Returns:
        train_dataset (`torch.utils.data.Dataset`): The training set.
        val_dataset (`torch.utils.data.Dataset`): The validation set.
    """
    if dataset == "ljspeech":
        data = LJSPEECH(root=file_path, download=False)

        val_length = int(len(data) * val_ratio)
        lengths = [len(data) - val_length, val_length]
        train_dataset, val_dataset = random_split(data, lengths)
    else:
        raise ValueError(f"Expected datasets: `ljspeech`, but found {dataset}")

    train_dataset = Processed(train_dataset, transforms, text_preprocessor)
    val_dataset = Processed(val_dataset, transforms, text_preprocessor)

    train_dataset = MapMemoryCache(train_dataset)
    val_dataset = MapMemoryCache(val_dataset)

    return train_dataset, val_dataset


def text_mel_collate_fn(
    batch: Tuple[Tensor, Tensor], n_frames_per_step: int = 1
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """The collate function padding and adjusting the data based on `n_frames_per_step`.
    Modified from https://github.com/NVIDIA/DeepLearningExamples

    Args:
        batch (tuple of two tensors): the first tensor is the mel spectrogram with shape
            (n_batch, n_mels, n_frames), the second tensor is the text with shape (n_batch, ).
        n_frames_per_step (int, optional): The number of frames to advance every step.

    Returns:
        text_padded (Tensor): The input text to Tacotron2 with shape (n_batch, max of ``text_lengths``).
        text_lengths (Tensor): The length of each text with shape (n_batch).
        mel_specgram_padded (Tensor): The target mel spectrogram
            with shape (n_batch, n_mels, max of ``mel_specgram_lengths``)
        mel_specgram_lengths (Tensor): The length of each mel spectrogram with shape (n_batch).
        gate_padded (Tensor): The ground truth gate output
            with shape (n_batch, max of ``mel_specgram_lengths``)
    """
    text_lengths, ids_sorted_decreasing = torch.sort(
        torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True
    )
    max_input_len = text_lengths[0]

    text_padded = torch.zeros((len(batch), max_input_len), dtype=torch.int64)
    for i in range(len(ids_sorted_decreasing)):
        text = batch[ids_sorted_decreasing[i]][0]
        text_padded[i, : text.size(0)] = text

    # Right zero-pad mel-spec
    num_mels = batch[0][1].size(0)
    max_target_len = max([x[1].size(1) for x in batch])
    if max_target_len % n_frames_per_step != 0:
        max_target_len += n_frames_per_step - max_target_len % n_frames_per_step
        assert max_target_len % n_frames_per_step == 0

    # include mel padded and gate padded
    mel_specgram_padded = torch.zeros((len(batch), num_mels, max_target_len), dtype=torch.float32)
    gate_padded = torch.zeros((len(batch), max_target_len), dtype=torch.float32)
    mel_specgram_lengths = torch.LongTensor(len(batch))
    for i in range(len(ids_sorted_decreasing)):
        mel = batch[ids_sorted_decreasing[i]][1]
        mel_specgram_padded[i, :, : mel.size(1)] = mel
        mel_specgram_lengths[i] = mel.size(1)
        gate_padded[i, mel.size(1) - 1 :] = 1

    return text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths, gate_padded