1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
"""
Text-to-speech pipeline using Tacotron2.
"""
import argparse
import os
import random
import sys
from functools import partial
import numpy as np
import torch
import torchaudio
from datasets import InverseSpectralNormalization
from text.text_preprocessing import available_phonemizers, available_symbol_set, get_symbol_list, text_to_sequence
from torchaudio.models import Tacotron2, tacotron2 as pretrained_tacotron2
from utils import prepare_input_sequence
def parse_args():
r"""
Parse commandline arguments.
"""
from torchaudio.models.tacotron2 import _MODEL_CONFIG_AND_URLS as tacotron2_config_and_urls
from torchaudio.models.wavernn import _MODEL_CONFIG_AND_URLS as wavernn_config_and_urls
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--checkpoint-name",
type=str,
default=None,
choices=list(tacotron2_config_and_urls.keys()),
help="[string] The name of the checkpoint to load.",
)
parser.add_argument("--checkpoint-path", type=str, default=None, help="[string] Path to the checkpoint file.")
parser.add_argument("--output-path", type=str, default="./audio.wav", help="[string] Path to the output .wav file.")
parser.add_argument(
"--input-text",
"-i",
type=str,
default="Hello world",
help="[string] Type in something here and TTS will generate it!",
)
parser.add_argument(
"--vocoder",
default="nvidia_waveglow",
choices=["griffin_lim", "wavernn", "nvidia_waveglow"],
type=str,
help="Select the vocoder to use.",
)
parser.add_argument(
"--jit", default=False, action="store_true", help="If used, the model and inference function is jitted."
)
preprocessor = parser.add_argument_group("text preprocessor setup")
preprocessor.add_argument(
"--text-preprocessor",
default="english_characters",
type=str,
choices=available_symbol_set,
help="select text preprocessor to use.",
)
preprocessor.add_argument(
"--phonemizer",
default="DeepPhonemizer",
type=str,
choices=available_phonemizers,
help='select phonemizer to use, only used when text-preprocessor is "english_phonemes"',
)
preprocessor.add_argument(
"--phonemizer-checkpoint",
default="./en_us_cmudict_forward.pt",
type=str,
help="the path or name of the checkpoint for the phonemizer, "
'only used when text-preprocessor is "english_phonemes"',
)
preprocessor.add_argument(
"--cmudict-root", default="./", type=str, help="the root directory for storing CMU dictionary files"
)
audio = parser.add_argument_group("audio parameters")
audio.add_argument("--sample-rate", default=22050, type=int, help="Sampling rate")
audio.add_argument("--n-fft", default=1024, type=int, help="Filter length for STFT")
audio.add_argument("--n-mels", default=80, type=int, help="")
audio.add_argument("--mel-fmin", default=0.0, type=float, help="Minimum mel frequency")
audio.add_argument("--mel-fmax", default=8000.0, type=float, help="Maximum mel frequency")
# parameters for WaveRNN
wavernn = parser.add_argument_group("WaveRNN parameters")
wavernn.add_argument(
"--wavernn-checkpoint-name",
default="wavernn_10k_epochs_8bits_ljspeech",
choices=list(wavernn_config_and_urls.keys()),
help="Select the WaveRNN checkpoint.",
)
wavernn.add_argument(
"--wavernn-loss",
default="crossentropy",
choices=["crossentropy"],
type=str,
help="The type of loss the WaveRNN pretrained model is trained on.",
)
wavernn.add_argument(
"--wavernn-no-batch-inference",
default=False,
action="store_true",
help="Don't use batch inference for WaveRNN inference.",
)
wavernn.add_argument(
"--wavernn-no-mulaw", default=False, action="store_true", help="Don't use mulaw decoder to decode the signal."
)
wavernn.add_argument(
"--wavernn-batch-timesteps",
default=11000,
type=int,
help="The time steps for each batch. Only used when batch inference is used",
)
wavernn.add_argument(
"--wavernn-batch-overlap",
default=550,
type=int,
help="The overlapping time steps between batches. Only used when batch inference is used",
)
return parser
def unwrap_distributed(state_dict):
r"""torch.distributed.DistributedDataParallel wraps the model with an additional "module.".
This function unwraps this layer so that the weights can be loaded on models with a single GPU.
Args:
state_dict: Original state_dict.
Return:
unwrapped_state_dict: Unwrapped state_dict.
"""
return {k.replace("module.", ""): v for k, v in state_dict.items()}
def nvidia_waveglow_vocode(mel_specgram, device, jit=False):
waveglow = torch.hub.load("NVIDIA/DeepLearningExamples:torchhub", "nvidia_waveglow", model_math="fp16")
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
if args.jit:
raise ValueError("Vocoder option `nvidia_waveglow is not jittable.")
with torch.no_grad():
waveform = waveglow.infer(mel_specgram).cpu()
return waveform
def wavernn_vocode(
mel_specgram,
wavernn_checkpoint_name,
wavernn_loss,
wavernn_no_mulaw,
wavernn_no_batch_inference,
wavernn_batch_timesteps,
wavernn_batch_overlap,
device,
jit,
):
from torchaudio.models import wavernn
sys.path.append(os.path.join(os.path.dirname(__file__), "../pipeline_wavernn"))
from processing import NormalizeDB
from wavernn_inference_wrapper import WaveRNNInferenceWrapper
wavernn_model = wavernn(wavernn_checkpoint_name).eval().to(device)
wavernn_inference_model = WaveRNNInferenceWrapper(wavernn_model)
if jit:
wavernn_inference_model = torch.jit.script(wavernn_inference_model)
# WaveRNN spectro setting for default checkpoint
# n_fft = 2048
# n_mels = 80
# win_length = 1100
# hop_length = 275
# f_min = 40
# f_max = 11025
transforms = torch.nn.Sequential(
InverseSpectralNormalization(),
NormalizeDB(min_level_db=-100, normalization=True),
)
mel_specgram = transforms(mel_specgram.cpu())
with torch.no_grad():
waveform = wavernn_inference_model(
mel_specgram.to(device),
loss_name=wavernn_loss,
mulaw=(not wavernn_no_mulaw),
batched=(not wavernn_no_batch_inference),
timesteps=wavernn_batch_timesteps,
overlap=wavernn_batch_overlap,
)
return waveform.unsqueeze(0)
def griffin_lim_vocode(
mel_specgram,
n_fft,
n_mels,
sample_rate,
mel_fmin,
mel_fmax,
jit,
):
from torchaudio.transforms import GriffinLim, InverseMelScale
inv_norm = InverseSpectralNormalization()
inv_mel = InverseMelScale(
n_stft=(n_fft // 2 + 1),
n_mels=n_mels,
sample_rate=sample_rate,
f_min=mel_fmin,
f_max=mel_fmax,
mel_scale="slaney",
norm="slaney",
)
griffin_lim = GriffinLim(
n_fft=n_fft,
power=1,
hop_length=256,
win_length=1024,
)
vocoder = torch.nn.Sequential(inv_norm, inv_mel, griffin_lim)
if jit:
vocoder = torch.jit.script(vocoder)
waveform = vocoder(mel_specgram.cpu())
return waveform
def main(args):
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
if args.checkpoint_path is None and args.checkpoint_name is None:
raise ValueError("Either --checkpoint-path or --checkpoint-name must be specified.")
elif args.checkpoint_path is not None and args.checkpoint_name is not None:
raise ValueError("Both --checkpoint-path and --checkpoint-name are specified, " "can only specify one.")
n_symbols = len(get_symbol_list(args.text_preprocessor))
text_preprocessor = partial(
text_to_sequence,
symbol_list=args.text_preprocessor,
phonemizer=args.phonemizer,
checkpoint=args.phonemizer_checkpoint,
cmudict_root=args.cmudict_root,
)
if args.checkpoint_path is not None:
tacotron2 = Tacotron2(n_symbol=n_symbols)
tacotron2.load_state_dict(
unwrap_distributed(torch.load(args.checkpoint_path, map_location=device)["state_dict"])
)
tacotron2 = tacotron2.to(device).eval()
elif args.checkpoint_name is not None:
tacotron2 = pretrained_tacotron2(args.checkpoint_name).to(device).eval()
if n_symbols != tacotron2.n_symbols:
raise ValueError(
"the number of symbols for text_preprocessor ({n_symbols}) "
"should match the number of symbols for the"
"pretrained tacotron2 ({tacotron2.n_symbols})."
)
if args.jit:
tacotron2 = torch.jit.script(tacotron2)
sequences, lengths = prepare_input_sequence([args.input_text], text_processor=text_preprocessor)
sequences, lengths = sequences.long().to(device), lengths.long().to(device)
with torch.no_grad():
mel_specgram, _, _ = tacotron2.infer(sequences, lengths)
if args.vocoder == "nvidia_waveglow":
waveform = nvidia_waveglow_vocode(mel_specgram=mel_specgram, device=device, jit=args.jit)
elif args.vocoder == "wavernn":
waveform = wavernn_vocode(
mel_specgram=mel_specgram,
wavernn_checkpoint_name=args.wavernn_checkpoint_name,
wavernn_loss=args.wavernn_loss,
wavernn_no_mulaw=args.wavernn_no_mulaw,
wavernn_no_batch_inference=args.wavernn_no_batch_inference,
wavernn_batch_timesteps=args.wavernn_batch_timesteps,
wavernn_batch_overlap=args.wavernn_batch_overlap,
device=device,
jit=args.jit,
)
elif args.vocoder == "griffin_lim":
waveform = griffin_lim_vocode(
mel_specgram=mel_specgram,
n_fft=args.n_fft,
n_mels=args.n_mels,
sample_rate=args.sample_rate,
mel_fmin=args.mel_fmin,
mel_fmax=args.mel_fmax,
jit=args.jit,
)
torchaudio.save(args.output_path, waveform, args.sample_rate)
if __name__ == "__main__":
parser = parse_args()
args, _ = parser.parse_known_args()
main(args)
|