1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
# *****************************************************************************
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
"""
Modified from
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/train.py
"""
import argparse
import logging
import os
import random
from datetime import datetime
from functools import partial
from time import time
import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torchaudio
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchaudio.models import Tacotron2
from tqdm import tqdm
plt.switch_backend("agg")
from datasets import SpectralNormalization, split_process_dataset, text_mel_collate_fn
from loss import Tacotron2Loss
from text.text_preprocessing import available_phonemizers, available_symbol_set, get_symbol_list, text_to_sequence
from utils import save_checkpoint
logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
logger = logging.getLogger(os.path.basename(__file__))
def parse_args(parser):
"""Parse commandline arguments."""
parser.add_argument(
"--dataset", default="ljspeech", choices=["ljspeech"], type=str, help="select dataset to train with"
)
parser.add_argument("--logging-dir", type=str, default=None, help="directory to save the log files")
parser.add_argument("--dataset-path", type=str, default="./", help="path to dataset")
parser.add_argument("--val-ratio", default=0.1, type=float, help="the ratio of waveforms for validation")
parser.add_argument("--anneal-steps", nargs="*", help="epochs after which decrease learning rate")
parser.add_argument(
"--anneal-factor", type=float, choices=[0.1, 0.3], default=0.1, help="factor for annealing learning rate"
)
parser.add_argument("--master-addr", default=None, type=str, help="the address to use for distributed training")
parser.add_argument("--master-port", default=None, type=str, help="the port to use for distributed training")
preprocessor = parser.add_argument_group("text preprocessor setup")
preprocessor.add_argument(
"--text-preprocessor",
default="english_characters",
type=str,
choices=available_symbol_set,
help="select text preprocessor to use.",
)
preprocessor.add_argument(
"--phonemizer",
type=str,
choices=available_phonemizers,
help='select phonemizer to use, only used when text-preprocessor is "english_phonemes"',
)
preprocessor.add_argument(
"--phonemizer-checkpoint",
type=str,
help="the path or name of the checkpoint for the phonemizer, "
'only used when text-preprocessor is "english_phonemes"',
)
preprocessor.add_argument(
"--cmudict-root", default="./", type=str, help="the root directory for storing cmudictionary files"
)
# training
training = parser.add_argument_group("training setup")
training.add_argument("--epochs", type=int, required=True, help="number of total epochs to run")
training.add_argument(
"--checkpoint-path",
type=str,
default="",
help="checkpoint path. If a file exists, " "the program will load it and resume training.",
)
training.add_argument("--workers", default=8, type=int, help="number of data loading workers")
training.add_argument(
"--validate-and-checkpoint-freq",
default=10,
type=int,
metavar="N",
help="validation and saving checkpoint frequency in epochs",
)
training.add_argument("--logging-freq", default=10, type=int, metavar="N", help="logging frequency in epochs")
optimization = parser.add_argument_group("optimization setup")
optimization.add_argument("--learning-rate", default=1e-3, type=float, help="initial learing rate")
optimization.add_argument("--weight-decay", default=1e-6, type=float, help="weight decay")
optimization.add_argument("--batch-size", default=32, type=int, help="batch size per GPU")
optimization.add_argument(
"--grad-clip", default=5.0, type=float, help="clipping gradient with maximum gradient norm value"
)
# model parameters
model = parser.add_argument_group("model parameters")
model.add_argument("--mask-padding", action="store_true", default=False, help="use mask padding")
model.add_argument("--symbols-embedding-dim", default=512, type=int, help="input embedding dimension")
# encoder
model.add_argument("--encoder-embedding-dim", default=512, type=int, help="encoder embedding dimension")
model.add_argument("--encoder-n-convolution", default=3, type=int, help="number of encoder convolutions")
model.add_argument("--encoder-kernel-size", default=5, type=int, help="encoder kernel size")
# decoder
model.add_argument(
"--n-frames-per-step",
default=1,
type=int,
help="number of frames processed per step (currently only 1 is supported)",
)
model.add_argument("--decoder-rnn-dim", default=1024, type=int, help="number of units in decoder LSTM")
model.add_argument("--decoder-dropout", default=0.1, type=float, help="dropout probability for decoder LSTM")
model.add_argument("--decoder-max-step", default=2000, type=int, help="maximum number of output mel spectrograms")
model.add_argument(
"--decoder-no-early-stopping",
action="store_true",
default=False,
help="stop decoding only when all samples are finished",
)
# attention model
model.add_argument(
"--attention-hidden-dim", default=128, type=int, help="dimension of attention hidden representation"
)
model.add_argument("--attention-rnn-dim", default=1024, type=int, help="number of units in attention LSTM")
model.add_argument(
"--attention-location-n-filter", default=32, type=int, help="number of filters for location-sensitive attention"
)
model.add_argument(
"--attention-location-kernel-size", default=31, type=int, help="kernel size for location-sensitive attention"
)
model.add_argument("--attention-dropout", default=0.1, type=float, help="dropout probability for attention LSTM")
model.add_argument("--prenet-dim", default=256, type=int, help="number of ReLU units in prenet layers")
# mel-post processing network parameters
model.add_argument("--postnet-n-convolution", default=5, type=float, help="number of postnet convolutions")
model.add_argument("--postnet-kernel-size", default=5, type=float, help="postnet kernel size")
model.add_argument("--postnet-embedding-dim", default=512, type=float, help="postnet embedding dimension")
model.add_argument("--gate-threshold", default=0.5, type=float, help="probability threshold for stop token")
# audio parameters
audio = parser.add_argument_group("audio parameters")
audio.add_argument("--sample-rate", default=22050, type=int, help="Sampling rate")
audio.add_argument("--n-fft", default=1024, type=int, help="Filter length for STFT")
audio.add_argument("--hop-length", default=256, type=int, help="Hop (stride) length")
audio.add_argument("--win-length", default=1024, type=int, help="Window length")
audio.add_argument("--n-mels", default=80, type=int, help="")
audio.add_argument("--mel-fmin", default=0.0, type=float, help="Minimum mel frequency")
audio.add_argument("--mel-fmax", default=8000.0, type=float, help="Maximum mel frequency")
return parser
def adjust_learning_rate(epoch, optimizer, learning_rate, anneal_steps, anneal_factor):
"""Adjust learning rate base on the initial setting."""
p = 0
if anneal_steps is not None:
for _, a_step in enumerate(anneal_steps):
if epoch >= int(a_step):
p = p + 1
if anneal_factor == 0.3:
lr = learning_rate * ((0.1 ** (p // 2)) * (1.0 if p % 2 == 0 else 0.3))
else:
lr = learning_rate * (anneal_factor**p)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def to_gpu(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True)
return x
def batch_to_gpu(batch):
text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths, gate_padded = batch
text_padded = to_gpu(text_padded).long()
text_lengths = to_gpu(text_lengths).long()
mel_specgram_padded = to_gpu(mel_specgram_padded).float()
gate_padded = to_gpu(gate_padded).float()
mel_specgram_lengths = to_gpu(mel_specgram_lengths).long()
x = (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
y = (mel_specgram_padded, gate_padded)
return x, y
def training_step(model, train_batch, batch_idx):
(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), y = batch_to_gpu(train_batch)
y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
y[0].requires_grad = False
y[1].requires_grad = False
losses = Tacotron2Loss()(y_pred[:3], y)
return losses[0] + losses[1] + losses[2], losses
def validation_step(model, val_batch, batch_idx):
(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), y = batch_to_gpu(val_batch)
y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
losses = Tacotron2Loss()(y_pred[:3], y)
return losses[0] + losses[1] + losses[2], losses
def reduce_tensor(tensor, world_size):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
if rt.is_floating_point():
rt = rt / world_size
else:
rt = rt // world_size
return rt
def log_additional_info(writer, model, loader, epoch):
model.eval()
data = next(iter(loader))
with torch.no_grad():
(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), _ = batch_to_gpu(data)
y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
mel_out, mel_out_postnet, gate_out, alignment = y_pred
fig = plt.figure()
ax = plt.gca()
ax.imshow(mel_out[0].cpu().numpy())
writer.add_figure("trn/mel_out", fig, epoch)
fig = plt.figure()
ax = plt.gca()
ax.imshow(mel_out_postnet[0].cpu().numpy())
writer.add_figure("trn/mel_out_postnet", fig, epoch)
writer.add_image("trn/gate_out", torch.tile(gate_out[:1], (10, 1)), epoch, dataformats="HW")
writer.add_image("trn/alignment", alignment[0], epoch, dataformats="HW")
def get_datasets(args):
text_preprocessor = partial(
text_to_sequence,
symbol_list=args.text_preprocessor,
phonemizer=args.phonemizer,
checkpoint=args.phonemizer_checkpoint,
cmudict_root=args.cmudict_root,
)
transforms = torch.nn.Sequential(
torchaudio.transforms.MelSpectrogram(
sample_rate=args.sample_rate,
n_fft=args.n_fft,
win_length=args.win_length,
hop_length=args.hop_length,
f_min=args.mel_fmin,
f_max=args.mel_fmax,
n_mels=args.n_mels,
mel_scale="slaney",
normalized=False,
power=1,
norm="slaney",
),
SpectralNormalization(),
)
trainset, valset = split_process_dataset(
args.dataset, args.dataset_path, args.val_ratio, transforms, text_preprocessor
)
return trainset, valset
def train(rank, world_size, args):
dist.init_process_group("nccl", rank=rank, world_size=world_size)
if rank == 0 and args.logging_dir:
if not os.path.isdir(args.logging_dir):
os.makedirs(args.logging_dir)
filehandler = logging.FileHandler(os.path.join(args.logging_dir, "train.log"))
filehandler.setLevel(logging.INFO)
logger.addHandler(filehandler)
writer = SummaryWriter(log_dir=args.logging_dir)
else:
writer = None
torch.manual_seed(0)
torch.cuda.set_device(rank)
symbols = get_symbol_list(args.text_preprocessor)
model = Tacotron2(
mask_padding=args.mask_padding,
n_mels=args.n_mels,
n_symbol=len(symbols),
n_frames_per_step=args.n_frames_per_step,
symbol_embedding_dim=args.symbols_embedding_dim,
encoder_embedding_dim=args.encoder_embedding_dim,
encoder_n_convolution=args.encoder_n_convolution,
encoder_kernel_size=args.encoder_kernel_size,
decoder_rnn_dim=args.decoder_rnn_dim,
decoder_max_step=args.decoder_max_step,
decoder_dropout=args.decoder_dropout,
decoder_early_stopping=(not args.decoder_no_early_stopping),
attention_rnn_dim=args.attention_rnn_dim,
attention_hidden_dim=args.attention_hidden_dim,
attention_location_n_filter=args.attention_location_n_filter,
attention_location_kernel_size=args.attention_location_kernel_size,
attention_dropout=args.attention_dropout,
prenet_dim=args.prenet_dim,
postnet_n_convolution=args.postnet_n_convolution,
postnet_kernel_size=args.postnet_kernel_size,
postnet_embedding_dim=args.postnet_embedding_dim,
gate_threshold=args.gate_threshold,
).cuda(rank)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])
optimizer = Adam(model.parameters(), lr=args.learning_rate)
best_loss = float("inf")
start_epoch = 0
if args.checkpoint_path and os.path.isfile(args.checkpoint_path):
logger.info(f"Checkpoint: loading '{args.checkpoint_path}'")
map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
checkpoint = torch.load(args.checkpoint_path, map_location=map_location)
start_epoch = checkpoint["epoch"]
best_loss = checkpoint["best_loss"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
logger.info(f"Checkpoint: loaded '{args.checkpoint_path}' at epoch {checkpoint['epoch']}")
trainset, valset = get_datasets(args)
train_sampler = torch.utils.data.distributed.DistributedSampler(
trainset,
shuffle=True,
num_replicas=world_size,
rank=rank,
)
val_sampler = torch.utils.data.distributed.DistributedSampler(
valset,
shuffle=False,
num_replicas=world_size,
rank=rank,
)
loader_params = {
"batch_size": args.batch_size,
"num_workers": args.workers,
"prefetch_factor": 1024,
"persistent_workers": True,
"shuffle": False,
"pin_memory": True,
"drop_last": False,
"collate_fn": partial(text_mel_collate_fn, n_frames_per_step=args.n_frames_per_step),
}
train_loader = DataLoader(trainset, sampler=train_sampler, **loader_params)
val_loader = DataLoader(valset, sampler=val_sampler, **loader_params)
dist.barrier()
for epoch in range(start_epoch, args.epochs):
start = time()
model.train()
trn_loss, counts = 0, 0
if rank == 0:
iterator = tqdm(enumerate(train_loader), desc=f"Epoch {epoch}", total=len(train_loader))
else:
iterator = enumerate(train_loader)
for i, batch in iterator:
adjust_learning_rate(epoch, optimizer, args.learning_rate, args.anneal_steps, args.anneal_factor)
model.zero_grad()
loss, losses = training_step(model, batch, i)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
if rank == 0 and writer:
global_iters = epoch * len(train_loader)
writer.add_scalar("trn/mel_loss", losses[0], global_iters)
writer.add_scalar("trn/mel_postnet_loss", losses[1], global_iters)
writer.add_scalar("trn/gate_loss", losses[2], global_iters)
trn_loss += loss * len(batch[0])
counts += len(batch[0])
trn_loss = trn_loss / counts
trn_loss = reduce_tensor(trn_loss, world_size)
if rank == 0:
logger.info(f"[Epoch: {epoch}] time: {time()-start}; trn_loss: {trn_loss}")
if writer:
writer.add_scalar("trn_loss", trn_loss, epoch)
if ((epoch + 1) % args.validate_and_checkpoint_freq == 0) or (epoch == args.epochs - 1):
val_start_time = time()
model.eval()
val_loss, counts = 0, 0
iterator = tqdm(enumerate(val_loader), desc=f"[Rank: {rank}; Epoch: {epoch}; Eval]", total=len(val_loader))
with torch.no_grad():
for val_batch_idx, val_batch in iterator:
val_loss = val_loss + validation_step(model, val_batch, val_batch_idx)[0] * len(val_batch[0])
counts = counts + len(val_batch[0])
val_loss = val_loss / counts
val_loss = reduce_tensor(val_loss, world_size)
if rank == 0 and writer:
writer.add_scalar("val_loss", val_loss, epoch)
log_additional_info(writer, model, val_loader, epoch)
if rank == 0:
is_best = val_loss < best_loss
best_loss = min(val_loss, best_loss)
logger.info(f"[Rank: {rank}, Epoch: {epoch}; Eval] time: {time()-val_start_time}; val_loss: {val_loss}")
logger.info(f"[Epoch: {epoch}] Saving checkpoint to {args.checkpoint_path}")
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_loss": best_loss,
"optimizer": optimizer.state_dict(),
},
is_best,
args.checkpoint_path,
)
dist.destroy_process_group()
def main(args):
logger.info("Start time: {}".format(str(datetime.now())))
torch.manual_seed(0)
random.seed(0)
if args.master_addr is not None:
os.environ["MASTER_ADDR"] = args.master_addr
elif "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = "localhost"
if args.master_port is not None:
os.environ["MASTER_PORT"] = args.master_port
elif "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = "17778"
device_counts = torch.cuda.device_count()
logger.info(f"# available GPUs: {device_counts}")
# download dataset is not already downloaded
if args.dataset == "ljspeech":
if not os.path.exists(os.path.join(args.dataset_path, "LJSpeech-1.1")):
from torchaudio.datasets import LJSPEECH
LJSPEECH(root=args.dataset_path, download=True)
if device_counts == 1:
train(0, 1, args)
else:
mp.spawn(
train,
args=(
device_counts,
args,
),
nprocs=device_counts,
join=True,
)
logger.info(f"End time: {datetime.now()}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="PyTorch Tacotron 2 Training")
parser = parse_args(parser)
args, _ = parser.parse_known_args()
main(args)
|