File: train.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (527 lines) | stat: -rw-r--r-- 21,100 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
"""
Modified from
https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/train.py
"""

import argparse
import logging
import os
import random
from datetime import datetime
from functools import partial
from time import time

import matplotlib.pyplot as plt
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torchaudio
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchaudio.models import Tacotron2
from tqdm import tqdm

plt.switch_backend("agg")

from datasets import SpectralNormalization, split_process_dataset, text_mel_collate_fn
from loss import Tacotron2Loss
from text.text_preprocessing import available_phonemizers, available_symbol_set, get_symbol_list, text_to_sequence
from utils import save_checkpoint


logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
logger = logging.getLogger(os.path.basename(__file__))


def parse_args(parser):
    """Parse commandline arguments."""

    parser.add_argument(
        "--dataset", default="ljspeech", choices=["ljspeech"], type=str, help="select dataset to train with"
    )
    parser.add_argument("--logging-dir", type=str, default=None, help="directory to save the log files")
    parser.add_argument("--dataset-path", type=str, default="./", help="path to dataset")
    parser.add_argument("--val-ratio", default=0.1, type=float, help="the ratio of waveforms for validation")

    parser.add_argument("--anneal-steps", nargs="*", help="epochs after which decrease learning rate")
    parser.add_argument(
        "--anneal-factor", type=float, choices=[0.1, 0.3], default=0.1, help="factor for annealing learning rate"
    )

    parser.add_argument("--master-addr", default=None, type=str, help="the address to use for distributed training")
    parser.add_argument("--master-port", default=None, type=str, help="the port to use for distributed training")

    preprocessor = parser.add_argument_group("text preprocessor setup")
    preprocessor.add_argument(
        "--text-preprocessor",
        default="english_characters",
        type=str,
        choices=available_symbol_set,
        help="select text preprocessor to use.",
    )
    preprocessor.add_argument(
        "--phonemizer",
        type=str,
        choices=available_phonemizers,
        help='select phonemizer to use, only used when text-preprocessor is "english_phonemes"',
    )
    preprocessor.add_argument(
        "--phonemizer-checkpoint",
        type=str,
        help="the path or name of the checkpoint for the phonemizer, "
        'only used when text-preprocessor is "english_phonemes"',
    )
    preprocessor.add_argument(
        "--cmudict-root", default="./", type=str, help="the root directory for storing cmudictionary files"
    )

    # training
    training = parser.add_argument_group("training setup")
    training.add_argument("--epochs", type=int, required=True, help="number of total epochs to run")
    training.add_argument(
        "--checkpoint-path",
        type=str,
        default="",
        help="checkpoint path. If a file exists, " "the program will load it and resume training.",
    )
    training.add_argument("--workers", default=8, type=int, help="number of data loading workers")
    training.add_argument(
        "--validate-and-checkpoint-freq",
        default=10,
        type=int,
        metavar="N",
        help="validation and saving checkpoint frequency in epochs",
    )
    training.add_argument("--logging-freq", default=10, type=int, metavar="N", help="logging frequency in epochs")

    optimization = parser.add_argument_group("optimization setup")
    optimization.add_argument("--learning-rate", default=1e-3, type=float, help="initial learing rate")
    optimization.add_argument("--weight-decay", default=1e-6, type=float, help="weight decay")
    optimization.add_argument("--batch-size", default=32, type=int, help="batch size per GPU")
    optimization.add_argument(
        "--grad-clip", default=5.0, type=float, help="clipping gradient with maximum gradient norm value"
    )

    # model parameters
    model = parser.add_argument_group("model parameters")
    model.add_argument("--mask-padding", action="store_true", default=False, help="use mask padding")
    model.add_argument("--symbols-embedding-dim", default=512, type=int, help="input embedding dimension")

    # encoder
    model.add_argument("--encoder-embedding-dim", default=512, type=int, help="encoder embedding dimension")
    model.add_argument("--encoder-n-convolution", default=3, type=int, help="number of encoder convolutions")
    model.add_argument("--encoder-kernel-size", default=5, type=int, help="encoder kernel size")
    # decoder
    model.add_argument(
        "--n-frames-per-step",
        default=1,
        type=int,
        help="number of frames processed per step (currently only 1 is supported)",
    )
    model.add_argument("--decoder-rnn-dim", default=1024, type=int, help="number of units in decoder LSTM")
    model.add_argument("--decoder-dropout", default=0.1, type=float, help="dropout probability for decoder LSTM")
    model.add_argument("--decoder-max-step", default=2000, type=int, help="maximum number of output mel spectrograms")
    model.add_argument(
        "--decoder-no-early-stopping",
        action="store_true",
        default=False,
        help="stop decoding only when all samples are finished",
    )

    # attention model
    model.add_argument(
        "--attention-hidden-dim", default=128, type=int, help="dimension of attention hidden representation"
    )
    model.add_argument("--attention-rnn-dim", default=1024, type=int, help="number of units in attention LSTM")
    model.add_argument(
        "--attention-location-n-filter", default=32, type=int, help="number of filters for location-sensitive attention"
    )
    model.add_argument(
        "--attention-location-kernel-size", default=31, type=int, help="kernel size for location-sensitive attention"
    )
    model.add_argument("--attention-dropout", default=0.1, type=float, help="dropout probability for attention LSTM")

    model.add_argument("--prenet-dim", default=256, type=int, help="number of ReLU units in prenet layers")

    # mel-post processing network parameters
    model.add_argument("--postnet-n-convolution", default=5, type=float, help="number of postnet convolutions")
    model.add_argument("--postnet-kernel-size", default=5, type=float, help="postnet kernel size")
    model.add_argument("--postnet-embedding-dim", default=512, type=float, help="postnet embedding dimension")

    model.add_argument("--gate-threshold", default=0.5, type=float, help="probability threshold for stop token")

    # audio parameters
    audio = parser.add_argument_group("audio parameters")
    audio.add_argument("--sample-rate", default=22050, type=int, help="Sampling rate")
    audio.add_argument("--n-fft", default=1024, type=int, help="Filter length for STFT")
    audio.add_argument("--hop-length", default=256, type=int, help="Hop (stride) length")
    audio.add_argument("--win-length", default=1024, type=int, help="Window length")
    audio.add_argument("--n-mels", default=80, type=int, help="")
    audio.add_argument("--mel-fmin", default=0.0, type=float, help="Minimum mel frequency")
    audio.add_argument("--mel-fmax", default=8000.0, type=float, help="Maximum mel frequency")

    return parser


def adjust_learning_rate(epoch, optimizer, learning_rate, anneal_steps, anneal_factor):
    """Adjust learning rate base on the initial setting."""
    p = 0
    if anneal_steps is not None:
        for _, a_step in enumerate(anneal_steps):
            if epoch >= int(a_step):
                p = p + 1

    if anneal_factor == 0.3:
        lr = learning_rate * ((0.1 ** (p // 2)) * (1.0 if p % 2 == 0 else 0.3))
    else:
        lr = learning_rate * (anneal_factor**p)

    for param_group in optimizer.param_groups:
        param_group["lr"] = lr


def to_gpu(x):
    x = x.contiguous()
    if torch.cuda.is_available():
        x = x.cuda(non_blocking=True)
    return x


def batch_to_gpu(batch):
    text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths, gate_padded = batch
    text_padded = to_gpu(text_padded).long()
    text_lengths = to_gpu(text_lengths).long()
    mel_specgram_padded = to_gpu(mel_specgram_padded).float()
    gate_padded = to_gpu(gate_padded).float()
    mel_specgram_lengths = to_gpu(mel_specgram_lengths).long()
    x = (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
    y = (mel_specgram_padded, gate_padded)
    return x, y


def training_step(model, train_batch, batch_idx):
    (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), y = batch_to_gpu(train_batch)
    y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
    y[0].requires_grad = False
    y[1].requires_grad = False
    losses = Tacotron2Loss()(y_pred[:3], y)
    return losses[0] + losses[1] + losses[2], losses


def validation_step(model, val_batch, batch_idx):
    (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), y = batch_to_gpu(val_batch)
    y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
    losses = Tacotron2Loss()(y_pred[:3], y)
    return losses[0] + losses[1] + losses[2], losses


def reduce_tensor(tensor, world_size):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    if rt.is_floating_point():
        rt = rt / world_size
    else:
        rt = rt // world_size
    return rt


def log_additional_info(writer, model, loader, epoch):
    model.eval()
    data = next(iter(loader))
    with torch.no_grad():
        (text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths), _ = batch_to_gpu(data)
        y_pred = model(text_padded, text_lengths, mel_specgram_padded, mel_specgram_lengths)
        mel_out, mel_out_postnet, gate_out, alignment = y_pred

    fig = plt.figure()
    ax = plt.gca()
    ax.imshow(mel_out[0].cpu().numpy())
    writer.add_figure("trn/mel_out", fig, epoch)
    fig = plt.figure()
    ax = plt.gca()
    ax.imshow(mel_out_postnet[0].cpu().numpy())
    writer.add_figure("trn/mel_out_postnet", fig, epoch)
    writer.add_image("trn/gate_out", torch.tile(gate_out[:1], (10, 1)), epoch, dataformats="HW")
    writer.add_image("trn/alignment", alignment[0], epoch, dataformats="HW")


def get_datasets(args):
    text_preprocessor = partial(
        text_to_sequence,
        symbol_list=args.text_preprocessor,
        phonemizer=args.phonemizer,
        checkpoint=args.phonemizer_checkpoint,
        cmudict_root=args.cmudict_root,
    )

    transforms = torch.nn.Sequential(
        torchaudio.transforms.MelSpectrogram(
            sample_rate=args.sample_rate,
            n_fft=args.n_fft,
            win_length=args.win_length,
            hop_length=args.hop_length,
            f_min=args.mel_fmin,
            f_max=args.mel_fmax,
            n_mels=args.n_mels,
            mel_scale="slaney",
            normalized=False,
            power=1,
            norm="slaney",
        ),
        SpectralNormalization(),
    )
    trainset, valset = split_process_dataset(
        args.dataset, args.dataset_path, args.val_ratio, transforms, text_preprocessor
    )
    return trainset, valset


def train(rank, world_size, args):
    dist.init_process_group("nccl", rank=rank, world_size=world_size)

    if rank == 0 and args.logging_dir:
        if not os.path.isdir(args.logging_dir):
            os.makedirs(args.logging_dir)
        filehandler = logging.FileHandler(os.path.join(args.logging_dir, "train.log"))
        filehandler.setLevel(logging.INFO)
        logger.addHandler(filehandler)

        writer = SummaryWriter(log_dir=args.logging_dir)
    else:
        writer = None

    torch.manual_seed(0)

    torch.cuda.set_device(rank)

    symbols = get_symbol_list(args.text_preprocessor)

    model = Tacotron2(
        mask_padding=args.mask_padding,
        n_mels=args.n_mels,
        n_symbol=len(symbols),
        n_frames_per_step=args.n_frames_per_step,
        symbol_embedding_dim=args.symbols_embedding_dim,
        encoder_embedding_dim=args.encoder_embedding_dim,
        encoder_n_convolution=args.encoder_n_convolution,
        encoder_kernel_size=args.encoder_kernel_size,
        decoder_rnn_dim=args.decoder_rnn_dim,
        decoder_max_step=args.decoder_max_step,
        decoder_dropout=args.decoder_dropout,
        decoder_early_stopping=(not args.decoder_no_early_stopping),
        attention_rnn_dim=args.attention_rnn_dim,
        attention_hidden_dim=args.attention_hidden_dim,
        attention_location_n_filter=args.attention_location_n_filter,
        attention_location_kernel_size=args.attention_location_kernel_size,
        attention_dropout=args.attention_dropout,
        prenet_dim=args.prenet_dim,
        postnet_n_convolution=args.postnet_n_convolution,
        postnet_kernel_size=args.postnet_kernel_size,
        postnet_embedding_dim=args.postnet_embedding_dim,
        gate_threshold=args.gate_threshold,
    ).cuda(rank)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])

    optimizer = Adam(model.parameters(), lr=args.learning_rate)

    best_loss = float("inf")
    start_epoch = 0

    if args.checkpoint_path and os.path.isfile(args.checkpoint_path):
        logger.info(f"Checkpoint: loading '{args.checkpoint_path}'")
        map_location = {"cuda:%d" % 0: "cuda:%d" % rank}
        checkpoint = torch.load(args.checkpoint_path, map_location=map_location)

        start_epoch = checkpoint["epoch"]
        best_loss = checkpoint["best_loss"]

        model.load_state_dict(checkpoint["state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer"])

        logger.info(f"Checkpoint: loaded '{args.checkpoint_path}' at epoch {checkpoint['epoch']}")

    trainset, valset = get_datasets(args)

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        trainset,
        shuffle=True,
        num_replicas=world_size,
        rank=rank,
    )
    val_sampler = torch.utils.data.distributed.DistributedSampler(
        valset,
        shuffle=False,
        num_replicas=world_size,
        rank=rank,
    )

    loader_params = {
        "batch_size": args.batch_size,
        "num_workers": args.workers,
        "prefetch_factor": 1024,
        "persistent_workers": True,
        "shuffle": False,
        "pin_memory": True,
        "drop_last": False,
        "collate_fn": partial(text_mel_collate_fn, n_frames_per_step=args.n_frames_per_step),
    }

    train_loader = DataLoader(trainset, sampler=train_sampler, **loader_params)
    val_loader = DataLoader(valset, sampler=val_sampler, **loader_params)
    dist.barrier()

    for epoch in range(start_epoch, args.epochs):
        start = time()

        model.train()
        trn_loss, counts = 0, 0

        if rank == 0:
            iterator = tqdm(enumerate(train_loader), desc=f"Epoch {epoch}", total=len(train_loader))
        else:
            iterator = enumerate(train_loader)

        for i, batch in iterator:
            adjust_learning_rate(epoch, optimizer, args.learning_rate, args.anneal_steps, args.anneal_factor)

            model.zero_grad()

            loss, losses = training_step(model, batch, i)

            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)

            optimizer.step()

            if rank == 0 and writer:
                global_iters = epoch * len(train_loader)
                writer.add_scalar("trn/mel_loss", losses[0], global_iters)
                writer.add_scalar("trn/mel_postnet_loss", losses[1], global_iters)
                writer.add_scalar("trn/gate_loss", losses[2], global_iters)

            trn_loss += loss * len(batch[0])
            counts += len(batch[0])

        trn_loss = trn_loss / counts

        trn_loss = reduce_tensor(trn_loss, world_size)
        if rank == 0:
            logger.info(f"[Epoch: {epoch}] time: {time()-start}; trn_loss: {trn_loss}")
            if writer:
                writer.add_scalar("trn_loss", trn_loss, epoch)

        if ((epoch + 1) % args.validate_and_checkpoint_freq == 0) or (epoch == args.epochs - 1):

            val_start_time = time()
            model.eval()

            val_loss, counts = 0, 0
            iterator = tqdm(enumerate(val_loader), desc=f"[Rank: {rank}; Epoch: {epoch}; Eval]", total=len(val_loader))

            with torch.no_grad():
                for val_batch_idx, val_batch in iterator:
                    val_loss = val_loss + validation_step(model, val_batch, val_batch_idx)[0] * len(val_batch[0])
                    counts = counts + len(val_batch[0])
                val_loss = val_loss / counts

            val_loss = reduce_tensor(val_loss, world_size)
            if rank == 0 and writer:
                writer.add_scalar("val_loss", val_loss, epoch)
                log_additional_info(writer, model, val_loader, epoch)

            if rank == 0:
                is_best = val_loss < best_loss
                best_loss = min(val_loss, best_loss)
                logger.info(f"[Rank: {rank}, Epoch: {epoch}; Eval] time: {time()-val_start_time}; val_loss: {val_loss}")
                logger.info(f"[Epoch: {epoch}] Saving checkpoint to {args.checkpoint_path}")
                save_checkpoint(
                    {
                        "epoch": epoch + 1,
                        "state_dict": model.state_dict(),
                        "best_loss": best_loss,
                        "optimizer": optimizer.state_dict(),
                    },
                    is_best,
                    args.checkpoint_path,
                )

    dist.destroy_process_group()


def main(args):
    logger.info("Start time: {}".format(str(datetime.now())))

    torch.manual_seed(0)
    random.seed(0)

    if args.master_addr is not None:
        os.environ["MASTER_ADDR"] = args.master_addr
    elif "MASTER_ADDR" not in os.environ:
        os.environ["MASTER_ADDR"] = "localhost"

    if args.master_port is not None:
        os.environ["MASTER_PORT"] = args.master_port
    elif "MASTER_PORT" not in os.environ:
        os.environ["MASTER_PORT"] = "17778"

    device_counts = torch.cuda.device_count()

    logger.info(f"# available GPUs: {device_counts}")

    # download dataset is not already downloaded
    if args.dataset == "ljspeech":
        if not os.path.exists(os.path.join(args.dataset_path, "LJSpeech-1.1")):
            from torchaudio.datasets import LJSPEECH

            LJSPEECH(root=args.dataset_path, download=True)

    if device_counts == 1:
        train(0, 1, args)
    else:
        mp.spawn(
            train,
            args=(
                device_counts,
                args,
            ),
            nprocs=device_counts,
            join=True,
        )

    logger.info(f"End time: {datetime.now()}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="PyTorch Tacotron 2 Training")
    parser = parse_args(parser)
    args, _ = parser.parse_known_args()

    main(args)