1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
import argparse
import logging
import os
import string
from datetime import datetime
from time import time
import torch
import torchaudio
from ctc_decoders import GreedyDecoder
from datasets import collate_factory, split_process_librispeech
from languagemodels import LanguageModel
from torch.optim import Adadelta, Adam, AdamW, SGD
from torch.optim.lr_scheduler import ExponentialLR, ReduceLROnPlateau
from torch.utils.data import DataLoader
from torchaudio.functional import edit_distance
from torchaudio.models.wav2letter import Wav2Letter
from transforms import Normalize, UnsqueezeFirst
from utils import count_parameters, MetricLogger, save_checkpoint
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--type",
metavar="T",
default="mfcc",
choices=["waveform", "mfcc"],
help="input type for model",
)
parser.add_argument(
"--freq-mask",
default=0,
type=int,
metavar="N",
help="maximal width of frequency mask",
)
parser.add_argument(
"--win-length",
default=400,
type=int,
metavar="N",
help="width of spectrogram window",
)
parser.add_argument(
"--hop-length",
default=160,
type=int,
metavar="N",
help="width of spectrogram window",
)
parser.add_argument(
"--time-mask",
default=0,
type=int,
metavar="N",
help="maximal width of time mask",
)
parser.add_argument(
"--workers",
default=0,
type=int,
metavar="N",
help="number of data loading workers",
)
parser.add_argument(
"--checkpoint",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint",
)
parser.add_argument(
"--epochs",
default=200,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="manual epoch number")
parser.add_argument(
"--reduce-lr-valid",
action="store_true",
help="reduce learning rate based on validation loss",
)
parser.add_argument("--normalize", action="store_true", help="normalize model input")
parser.add_argument("--progress-bar", action="store_true", help="use progress bar while training")
parser.add_argument(
"--decoder",
metavar="D",
default="greedy",
choices=["greedy"],
help="decoder to use",
)
parser.add_argument("--batch-size", default=128, type=int, metavar="N", help="mini-batch size")
parser.add_argument(
"--n-bins",
default=13,
type=int,
metavar="N",
help="number of bins in transforms",
)
parser.add_argument(
"--optimizer",
metavar="OPT",
default="adadelta",
choices=["sgd", "adadelta", "adam", "adamw"],
help="optimizer to use",
)
parser.add_argument(
"--scheduler",
metavar="S",
default="reduceonplateau",
choices=["exponential", "reduceonplateau"],
help="optimizer to use",
)
parser.add_argument(
"--learning-rate",
default=0.6,
type=float,
metavar="LR",
help="initial learning rate",
)
parser.add_argument(
"--gamma",
default=0.99,
type=float,
metavar="GAMMA",
help="learning rate exponential decay constant",
)
parser.add_argument("--momentum", default=0.8, type=float, metavar="M", help="momentum")
parser.add_argument("--beta_1", default=0.9, type=float, metavar="BETA_1", help="beta_1")
parser.add_argument("--beta_2", default=0.999, type=float, metavar="BETA_2", help="beta_2")
parser.add_argument("--weight-decay", default=1e-5, type=float, metavar="W", help="weight decay")
parser.add_argument("--eps", metavar="EPS", type=float, default=1e-8)
parser.add_argument("--rho", metavar="RHO", type=float, default=0.95)
parser.add_argument("--clip-grad", metavar="NORM", type=float, default=0.0)
parser.add_argument(
"--dataset-root",
type=str,
help="specify dataset root folder",
)
parser.add_argument(
"--dataset-folder-in-archive",
type=str,
help="specify dataset folder in archive",
)
parser.add_argument(
"--dataset-train",
default=["train-clean-100"],
nargs="+",
type=str,
help="select which part of librispeech to train with",
)
parser.add_argument(
"--dataset-valid",
default=["dev-clean"],
nargs="+",
type=str,
help="select which part of librispeech to validate with",
)
parser.add_argument("--distributed", action="store_true", help="enable DistributedDataParallel")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--world-size", type=int, default=8, help="the world size to initiate DPP")
parser.add_argument("--jit", action="store_true", help="if used, model is jitted")
args = parser.parse_args()
logging.info(args)
return args
def setup_distributed(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
# initialize the process group
torch.distributed.init_process_group("nccl", rank=rank, world_size=world_size)
def model_length_function(tensor):
if tensor.shape[1] == 1:
# waveform mode
return int(tensor.shape[0]) // 160 // 2 + 1
return int(tensor.shape[0]) // 2 + 1
def compute_error_rates(outputs, targets, decoder, language_model, metric):
output = outputs.transpose(0, 1).to("cpu")
output = decoder(output)
# Compute CER
output = language_model.decode(output.tolist())
target = language_model.decode(targets.tolist())
print_length = 20
for i in range(2):
# Print a few examples
output_print = output[i].ljust(print_length)[:print_length]
target_print = target[i].ljust(print_length)[:print_length]
logging.info("Target: %s Output: %s", target_print, output_print)
cers = [edit_distance(t, o) for t, o in zip(target, output)]
cers = sum(cers)
n = sum(len(t) for t in target)
metric["batch char error"] = cers
metric["batch char total"] = n
metric["batch char error rate"] = cers / n
metric["epoch char error"] += cers
metric["epoch char total"] += n
metric["epoch char error rate"] = metric["epoch char error"] / metric["epoch char total"]
# Compute WER
output = [o.split(language_model.char_space) for o in output]
target = [t.split(language_model.char_space) for t in target]
wers = [edit_distance(t, o) for t, o in zip(target, output)]
wers = sum(wers)
n = sum(len(t) for t in target)
metric["batch word error"] = wers
metric["batch word total"] = n
metric["batch word error rate"] = wers / n
metric["epoch word error"] += wers
metric["epoch word total"] += n
metric["epoch word error rate"] = metric["epoch word error"] / metric["epoch word total"]
def train_one_epoch(
model,
criterion,
optimizer,
scheduler,
data_loader,
decoder,
language_model,
device,
epoch,
clip_grad,
disable_logger=False,
reduce_lr_on_plateau=False,
):
model.train()
metric = MetricLogger("train", disable=disable_logger)
metric["epoch"] = epoch
for inputs, targets, tensors_lengths, target_lengths in data_loader:
start = time()
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
# keep batch first for data parallel
outputs = model(inputs).transpose(-1, -2).transpose(0, 1)
# CTC
# outputs: input length, batch size, number of classes (including blank)
# targets: batch size, max target length
# input_lengths: batch size
# target_lengths: batch size
loss = criterion(outputs, targets, tensors_lengths, target_lengths)
optimizer.zero_grad()
loss.backward()
if clip_grad > 0:
metric["gradient"] = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad)
optimizer.step()
compute_error_rates(outputs, targets, decoder, language_model, metric)
try:
metric["lr"] = scheduler.get_last_lr()[0]
except AttributeError:
metric["lr"] = optimizer.param_groups[0]["lr"]
metric["batch size"] = len(inputs)
metric["n_channel"] = inputs.shape[1]
metric["n_time"] = inputs.shape[-1]
metric["dataset length"] += metric["batch size"]
metric["iteration"] += 1
metric["loss"] = loss.item()
metric["cumulative loss"] += metric["loss"]
metric["average loss"] = metric["cumulative loss"] / metric["iteration"]
metric["iteration time"] = time() - start
metric["epoch time"] += metric["iteration time"]
metric()
if reduce_lr_on_plateau and isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(metric["average loss"])
elif not isinstance(scheduler, ReduceLROnPlateau):
scheduler.step()
def evaluate(
model,
criterion,
data_loader,
decoder,
language_model,
device,
epoch,
disable_logger=False,
):
with torch.no_grad():
model.eval()
start = time()
metric = MetricLogger("validation", disable=disable_logger)
metric["epoch"] = epoch
for inputs, targets, tensors_lengths, target_lengths in data_loader:
inputs = inputs.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
# keep batch first for data parallel
outputs = model(inputs).transpose(-1, -2).transpose(0, 1)
# CTC
# outputs: input length, batch size, number of classes (including blank)
# targets: batch size, max target length
# input_lengths: batch size
# target_lengths: batch size
metric["cumulative loss"] += criterion(outputs, targets, tensors_lengths, target_lengths).item()
metric["dataset length"] += len(inputs)
metric["iteration"] += 1
compute_error_rates(outputs, targets, decoder, language_model, metric)
metric["average loss"] = metric["cumulative loss"] / metric["iteration"]
metric["validation time"] = time() - start
metric()
return metric["average loss"]
def main(rank, args):
# Distributed setup
if args.distributed:
setup_distributed(rank, args.world_size)
not_main_rank = args.distributed and rank != 0
logging.info("Start time: %s", datetime.now())
# Explicitly set seed to make sure models created in separate processes
# start from same random weights and biases
torch.manual_seed(args.seed)
# Empty CUDA cache
torch.cuda.empty_cache()
# Change backend for flac files
torchaudio.set_audio_backend("soundfile")
# Transforms
melkwargs = {
"n_fft": args.win_length,
"n_mels": args.n_bins,
"hop_length": args.hop_length,
}
sample_rate_original = 16000
if args.type == "mfcc":
transforms = torch.nn.Sequential(
torchaudio.transforms.MFCC(
sample_rate=sample_rate_original,
n_mfcc=args.n_bins,
melkwargs=melkwargs,
),
)
num_features = args.n_bins
elif args.type == "waveform":
transforms = torch.nn.Sequential(UnsqueezeFirst())
num_features = 1
else:
raise ValueError("Model type not supported")
if args.normalize:
transforms = torch.nn.Sequential(transforms, Normalize())
augmentations = torch.nn.Sequential()
if args.freq_mask:
augmentations = torch.nn.Sequential(
augmentations,
torchaudio.transforms.FrequencyMasking(freq_mask_param=args.freq_mask),
)
if args.time_mask:
augmentations = torch.nn.Sequential(
augmentations,
torchaudio.transforms.TimeMasking(time_mask_param=args.time_mask),
)
# Text preprocessing
char_blank = "*"
char_space = " "
char_apostrophe = "'"
labels = char_blank + char_space + char_apostrophe + string.ascii_lowercase
language_model = LanguageModel(labels, char_blank, char_space)
# Dataset
training, validation = split_process_librispeech(
[args.dataset_train, args.dataset_valid],
[transforms, transforms],
language_model,
root=args.dataset_root,
folder_in_archive=args.dataset_folder_in_archive,
)
# Decoder
if args.decoder == "greedy":
decoder = GreedyDecoder()
else:
raise ValueError("Selected decoder not supported")
# Model
model = Wav2Letter(
num_classes=language_model.length,
input_type=args.type,
num_features=num_features,
)
if args.jit:
model = torch.jit.script(model)
if args.distributed:
n = torch.cuda.device_count() // args.world_size
devices = list(range(rank * n, (rank + 1) * n))
model = model.to(devices[0])
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=devices)
else:
devices = ["cuda" if torch.cuda.is_available() else "cpu"]
model = model.to(devices[0], non_blocking=True)
model = torch.nn.DataParallel(model)
n = count_parameters(model)
logging.info("Number of parameters: %s", n)
# Optimizer
if args.optimizer == "adadelta":
optimizer = Adadelta(
model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay,
eps=args.eps,
rho=args.rho,
)
elif args.optimizer == "sgd":
optimizer = SGD(
model.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
elif args.optimizer == "adam":
optimizer = Adam(
model.parameters(),
lr=args.learning_rate,
betas=(args.beta_1, args.beta_2),
weight_decay=args.weight_decay,
eps=args.eps,
)
elif args.optimizer == "adamw":
optimizer = AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.beta_1, args.beta_2),
weight_decay=args.weight_decay,
eps=args.eps,
)
else:
raise ValueError("Selected optimizer not supported")
if args.scheduler == "exponential":
scheduler = ExponentialLR(optimizer, gamma=args.gamma)
elif args.scheduler == "reduceonplateau":
scheduler = ReduceLROnPlateau(optimizer, patience=10, threshold=1e-3)
else:
raise ValueError("Selected scheduler not supported")
criterion = torch.nn.CTCLoss(blank=language_model.mapping[char_blank], zero_infinity=False)
# Data Loader
collate_fn_train = collate_factory(model_length_function, augmentations)
collate_fn_valid = collate_factory(model_length_function)
loader_training_params = {
"num_workers": args.workers,
"pin_memory": True,
"shuffle": True,
"drop_last": True,
}
loader_validation_params = loader_training_params.copy()
loader_validation_params["shuffle"] = False
loader_training = DataLoader(
training,
batch_size=args.batch_size,
collate_fn=collate_fn_train,
**loader_training_params,
)
loader_validation = DataLoader(
validation,
batch_size=args.batch_size,
collate_fn=collate_fn_valid,
**loader_validation_params,
)
# Setup checkpoint
best_loss = 1.0
load_checkpoint = args.checkpoint and os.path.isfile(args.checkpoint)
if args.distributed:
torch.distributed.barrier()
if load_checkpoint:
logging.info("Checkpoint: loading %s", args.checkpoint)
checkpoint = torch.load(args.checkpoint)
args.start_epoch = checkpoint["epoch"]
best_loss = checkpoint["best_loss"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
logging.info("Checkpoint: loaded '%s' at epoch %s", args.checkpoint, checkpoint["epoch"])
else:
logging.info("Checkpoint: not found")
save_checkpoint(
{
"epoch": args.start_epoch,
"state_dict": model.state_dict(),
"best_loss": best_loss,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
},
False,
args.checkpoint,
not_main_rank,
)
if args.distributed:
torch.distributed.barrier()
torch.autograd.set_detect_anomaly(False)
for epoch in range(args.start_epoch, args.epochs):
logging.info("Epoch: %s", epoch)
train_one_epoch(
model,
criterion,
optimizer,
scheduler,
loader_training,
decoder,
language_model,
devices[0],
epoch,
args.clip_grad,
not_main_rank,
not args.reduce_lr_valid,
)
loss = evaluate(
model,
criterion,
loader_validation,
decoder,
language_model,
devices[0],
epoch,
not_main_rank,
)
if args.reduce_lr_valid and isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(loss)
is_best = loss < best_loss
best_loss = min(loss, best_loss)
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_loss": best_loss,
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
},
is_best,
args.checkpoint,
not_main_rank,
)
logging.info("End time: %s", datetime.now())
if args.distributed:
torch.distributed.destroy_process_group()
def spawn_main(main, args):
if args.distributed:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.world_size, join=True)
else:
main(0, args)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
args = parse_args()
spawn_main(main, args)
|