1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
import math
from pathlib import Path
from typing import Dict, Iterator, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
import torchaudio
from torch import Tensor
from torch.utils.data import BatchSampler, Dataset, DistributedSampler
from ..lightning_modules import Batch
class BucketizeBatchSampler(BatchSampler):
"""Buketized BatchSampler for sequential data with different lengths to reduce number of paddings.
Args:
lengths (List[int]): The lengths of the samples in the dataset.
num_buckets (int): The number of buckets to split the data samples.
min_len (int, optional): The minimum sample lengths to keep.
(Default: 0)
max_len (int or None, optional): The maximum sample lengths to keep. Inferred if not provided.
(Default ``None``)
max_token_count (int or None, optional): The max number of tokens in one mini-batch.
(Default: ``None``)
batch_size (int or None, optional): The number of samples in one mini-batch.
(Default: ``None``)
shuffle (bool, optional): Whether to shuffle buckets for non-monotonic length sampling.
(Default: True)
seed (int, optional): The seed for initialzing RNG. Only used when `shuffle` is True. (Default: 0)
drop_last (bool, optional): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``
(Default: False)
Note:
``max_token_count`` and ``batch_size`` are mutually exclusive. Only one argument of the two
should have value.
Note:
``drop_last`` is only valid when ``batch_size`` argument is given.
Note:
if ``shuffle`` is True, it will only shuffle the data once. Please set ``reload_dataloaders_every_n_epochs=1``
in pytorch_lightning Trainer and set ``seed`` to ``self.trainer.current_epoch`` to enable shuffling every epoch.
"""
def __init__(
self,
lengths: List[int],
num_buckets: int,
min_len: int = 0,
max_len: Optional[int] = None,
max_token_count: Optional[int] = None,
batch_size: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
) -> None:
if max_len is None:
max_len = max(lengths)
if not (0 <= min_len <= max_len):
raise AssertionError("``min_len`` should be non-negative and smaller than ``max_len``")
if max_token_count is not None and batch_size is not None:
raise AssertionError("The ``max_token_count`` and ``batch_size`` can't be both set.")
if max_token_count is None and batch_size is None:
raise AssertionError("One of ``max_token_count`` or ``batch_size`` must be set.")
if max_token_count is not None:
assert (
max_len <= max_token_count
), "The ``max_token_count`` must be greater than or equal to the maximum value of ``lengths``."
# Filter out samples which are outside the bounds of [min_len, max_len]
filtered_length_idx = [(length, i) for i, length in enumerate(lengths) if min_len <= length <= max_len]
if len(filtered_length_idx) == 0:
raise AssertionError("``lengths`` cannot be empty after filtering.")
sorted_filtered_length_idx = sorted(filtered_length_idx, key=lambda x: x[0])
self.lengths = [e[0] for e in sorted_filtered_length_idx]
self.indices = [e[1] for e in sorted_filtered_length_idx]
self.max_token_count = max_token_count
self.batch_size = batch_size
self.shuffle = shuffle
self.seed = seed
if self.shuffle:
self.g = torch.Generator()
self.g.manual_seed(self.seed)
self.drop_last = drop_last
self.buckets = self._get_buckets(self.lengths, num_buckets, min_len, max_len)
self._update_iter_list()
def _get_buckets(self, lengths: List[int], num_buckets: int, min_len: int, max_len: int) -> Dict[int, Tensor]:
"""Generate buckets based on the dataset.
Args:
lengths (List[int]): The lengths of the samples in the dataset.
num_buckets (int): The number of buckets.
min_len (int): The lower bound of the evenly spaced length intervals to determine bucket width.
max_len (int): The upper bound of the evenly spaced length intervals to determine bucket width.
Returns:
(dict[int, Tensor]): A dictionary in which the key is the bucket index, the value is
the Tensor of corresponding sample indices.
"""
buckets = {}
boundaries = torch.linspace(min_len - 1, max_len + 1, num_buckets + 1)
bucket_ids = torch.bucketize(torch.tensor(lengths), boundaries)
for i in range(bucket_ids.size(0)):
bucket_id = int(bucket_ids[i])
if bucket_id in buckets:
buckets[bucket_id].append(i)
else:
buckets[bucket_id] = [i]
for k in buckets:
buckets[k] = torch.as_tensor(buckets[k], dtype=torch.int)
buckets = {k: v for k, v in sorted(buckets.items())}
return buckets
def _update_iter_list(self) -> None:
if self.shuffle:
for k in self.buckets:
self.buckets[k] = self.buckets[k][torch.randperm(self.buckets[k].size(0), generator=self.g)]
self.iter_list = []
total_len = 0
batch = []
max_batch_size = self.max_token_count if self.max_token_count else self.batch_size
for k in self.buckets:
for i in range(self.buckets[k].size(0)):
index = int(self.buckets[k][i])
sample_length = self.lengths[index] if self.max_token_count else 1
if total_len + sample_length <= max_batch_size:
batch.append(self.indices[index])
total_len += sample_length
else:
self.iter_list.append(batch)
batch = [self.indices[index]]
total_len = sample_length
if len(batch) > 0 and (self.max_token_count or not self.drop_last):
self.iter_list.append(batch)
def __iter__(self) -> Iterator[List[int]]:
return iter(self.iter_list)
def __len__(self):
if self.batch_size or (self.max_token_count and not self.shuffle):
return len(self.iter_list)
class DistributedBatchSampler(DistributedSampler):
"""`BucketizeBatchSampler` wrapper that distributes across each processor.
Args:
batch_sampler (BucketizeBatchSampler): the initialized bucketize batch sampler.
num_replicas (int, optional): Number of processes participating in
distributed training. By default, :attr:`world_size` is retrieved from the
current distributed group.
rank (int, optional): Rank of the current process within :attr:`num_replicas`.
By default, :attr:`rank` is retrieved from the current distributed
group.
shuffle (bool, optional): if ``True``, the list of batch indices will be shuffled.
(Default: ``True``)
seed (int, optional): random seed used to shuffle the batch_sampler if
:attr:`shuffle=True`. This number should be identical across all
processes in the distributed group. (Default: ``0``)
drop_last (bool, optional): if ``True``, then the sampler will drop the
tail of the data to make it evenly divisible across the number of
replicas. If ``False``, the sampler will add extra indices to make
the data evenly divisible across the replicas. (Default: ``False``)
Note:
if ``shuffle`` is True, it will only shuffle the data once. Please set ``reload_dataloaders_every_n_epochs=1``
in pytorch_lightning Trainer, and set `sampler.set_epoch(self.current_epoch)` before DataLoader initialization
in `train_dataloader` method to enable shuffling every epoch.
"""
def __init__(
self,
batch_sampler: BucketizeBatchSampler,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False,
) -> None:
self.batch_sampler = batch_sampler
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.num_replicas = num_replicas
self.rank = rank
self.shuffle = shuffle
self.epoch = 0
self.seed = seed
self.drop_last = drop_last
self.shuffle = shuffle
indices = self.batch_sampler.iter_list
if self.drop_last and len(indices) % self.num_replicas != 0:
# Split to nearest available length that is evenly divisible.
# This is to ensure each rank receives the same amount of data when
# using this Sampler.
self.num_samples = math.ceil((len(indices) - self.num_replicas) / self.num_replicas)
else:
self.num_samples = math.ceil(len(indices) / self.num_replicas)
def __iter__(self):
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
perm = torch.randperm(len(self.batch_sampler.iter_list), generator=g).tolist()
indices = [self.batch_sampler.iter_list[i] for i in perm]
else:
indices = self.batch_sampler.iter_list
if self.drop_last:
self.total_size = len(indices) - len(indices) % self.num_replicas
else:
padding_size = self.num_replicas - len(indices) % self.num_replicas
indices += indices[:padding_size]
self.total_size = len(indices)
self.num_samples = self.total_size // self.num_replicas
self.subset = indices[self.rank : self.total_size : self.num_replicas]
assert len(self.subset) == self.num_samples
return iter(self.subset)
def __len__(self):
return self.num_samples
class HuBERTDataSet(Dataset):
"""Create a Dataset for HuBERT model training and fine-tuning.
Args:
exp_dir (str or Path): The root directory of the ``.tsv`` file list.
dataset (str): The dataset for training. Options: [``librispeech``, ``librilight``].
subset (str): The subset of the dataset. Options: [``train``, ``valid``].
"""
def __init__(
self,
exp_dir: Union[str, Path],
dataset: str,
subset: str,
) -> None:
self.exp_dir = Path(exp_dir)
tsv_dir = self.exp_dir / "tsv"
label_dir = self.exp_dir / "label"
f_list, ind_list, len_list = self._get_lists(tsv_dir, dataset, subset)
self.f_list, self.ind_list, self.len_list = f_list, ind_list, len_list
self.labels = self._load_labels(label_dir, dataset, subset)
def __len__(self):
return len(self.f_list)
def _get_lists(
self,
tsv_dir: Path,
dataset: str,
subset: str,
) -> Tuple[List[Path], List[int], List[int]]:
"""Get the list of paths for iteration.
Args:
tsv_dir (Path): The root directory of the ``.tsv`` file list.
dataset (str): The dataset for training. Options: [``librispeech``, ``librilight``].
subset (str): The subset of the dataset. Options: [``train``, ``valid``].
Returns:
(numpy.array) List of file paths.
(numpy.array) List of indices.
(numpy.array) List of waveform lengths.
"""
f_ind_len_list = []
with open(tsv_dir / f"{dataset}_{subset}.tsv") as f:
root = f.readline().rstrip()
for index, line in enumerate(f):
path, nsample = line.split("\t")
path = f"{root}/{path}"
nsample = int(nsample)
f_ind_len_list.append((path, index, nsample))
f_list, ind_list, len_list = [], [], []
for ele in f_ind_len_list:
f_list.append(ele[0])
ind_list.append(ele[1])
len_list.append(ele[2])
return np.asarray(f_list), np.asarray(ind_list), np.asarray(len_list)
def _load_audio(self, index: int) -> Tensor:
"""Load waveform given the sample index of the dataset.
Args:
index (int): The sample index.
Returns:
(Tensor): The corresponding waveform Tensor.
"""
wav_path = self.f_list[index]
waveform, sample_rate = torchaudio.load(wav_path)
assert waveform.shape[1] == self.len_list[index]
return waveform
def _load_labels(self, label_dir: Path, dataset: str, subset: str) -> np.array:
"""Load all labels to memory into a numpy array.
Args:
label_dir (Path): The directory that contains the label file.
dataset (str): The dataset for training. Options: [``librispeech``, ``librilight``].
subset (str): The subset of the dataset. Options: [``train``, ``valid``].
Returns:
(np.array): The numpy arrary that contains the labels for each audio file.
"""
with open(label_dir / f"label_{subset}.pt") as f:
labels = [line.rstrip() for line in f]
labels = [labels[i] for i in self.ind_list]
return np.asarray(labels, dtype=np.string_)
def __getitem__(self, index):
waveform = self._load_audio(index)
length = waveform.shape[1]
label = [int(ele) for ele in self.labels[index].split()]
label = torch.tensor(label)
return (waveform, label, length)
def _crop_audio_label(
waveform: Tensor,
label: Optional[Tensor],
length: Tensor,
num_frames: int,
rand_crop: bool,
) -> Tuple[Tensor, Optional[Tensor], Tensor]:
"""Collate the audio and label at the same time.
Args:
waveform (Tensor): The waveform Tensor with dimensions `(1, time)`.
label (Tensor, optional): The label Tensor with dimensions `(1, seq)`.
length (Tensor): The length Tensor with dimension `(1,)`.
num_frames (int): The final length of the waveform.
rand_crop (bool): if ``rand_crop`` is True, the starting index of the
waveform and label is random if the length is longer than the minimum
length in the mini-batch.
Returns:
(Tuple(Tensor, (Tensor, optional), Tensor)): Returns the Tensors for the waveform,
label, and the waveform length.
"""
kernel_size = 25
stride = 20
sample_rate = 16 # 16 per millisecond
frame_offset = 0
waveform = waveform[0]
if waveform.size(0) > num_frames and rand_crop:
diff = waveform.size(0) - num_frames
frame_offset = torch.randint(diff, size=(1,))
elif waveform.size(0) < num_frames:
num_frames = waveform.size(0)
if label is not None:
label_offset = max(
math.floor((frame_offset - kernel_size * sample_rate) / (stride * sample_rate)) + 1,
0,
)
num_label = math.floor((num_frames - kernel_size * sample_rate) / (stride * sample_rate)) + 1
label = label[label_offset : label_offset + num_label]
waveform = waveform[frame_offset : frame_offset + num_frames]
length = num_frames
return waveform, label, length
class CollateFnHubert:
"""The collate class for HuBERT pre-training and fine-tuning.
Args:
feature_type (str): The type of features for KMeans clustering.
Options: [``mfcc``, ``hubert``].
pad (bool): If ``True``, the waveforms and labels will be padded to the
max length in the mini-batch. If ``pad`` is False, the waveforms
and labels will be cropped to the minimum length in the mini-batch.
(Default: False)
rand_crop (bool): if ``True``, the starting index of the waveform
and label is random if the length is longer than the minimum
length in the mini-batch.
"""
def __init__(
self,
feature_type: str,
pad: bool = False,
rand_crop: bool = True,
) -> None:
self.feature_type = feature_type
self.pad = pad
self.rand_crop = rand_crop
def __call__(self, batch: List[Tuple[Tensor, Tensor, int]]) -> Dict:
"""
Args:
batch (List[Tuple(Tensor, Tensor, int)]):
The list of tuples that contains the waveforms, labels, and audio lengths.
Returns:
Dictionary
"input": Tuple of waveforms and lengths.
waveforms Tensor with dimensions `(batch, time)`.
lengths Tensor with dimension `(batch,)`.
"label": Tuple of label Tensor with dimensions `(batch, seq)`.
"""
if self.pad:
num_frames = max([sample[0].shape[1] for sample in batch])
else:
num_frames = min([sample[0].shape[1] for sample in batch])
waveforms, labels, lengths = [], [], []
for sample in batch:
waveform, label, length = sample
# The MFCC feature is 10ms per frame, while the HuBERT's transformer output
# is 20ms per frame. Downsample the KMeans label if it's generated by MFCC features.
if self.feature_type == "mfcc":
label = label[::2]
waveform, label, length = _crop_audio_label(waveform, label, length, num_frames, self.rand_crop)
waveforms.append(waveform)
lengths.append(length)
labels.append(label)
# make sure the shapes are the same if not apply zero-padding
if not self.pad:
assert all(
[waveform.shape[0] == waveforms[0].shape[0] for waveform in waveforms]
), "The dimensions of the waveforms should be identical in the same batch."
assert all(
[label.shape[0] == labels[0].shape[0] for label in labels]
), "The dimensions of the labels should be identical in the same batch."
waveforms = torch.nn.utils.rnn.pad_sequence(waveforms, batch_first=True)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True)
lengths = torch.tensor(lengths)
batch = Batch((waveforms, labels, lengths), (labels,))
return batch
class CollateFnWav2Vec2:
"""The collate class for Wav2Vec2 pre-training and fine-tuning.
Args:
pad (bool): If ``True``, the waveforms and labels will be padded to the
max length in the mini-batch. If ``pad`` is False, the waveforms
and labels will be cropped to the minimum length in the mini-batch.
(Default: False)
rand_crop (bool): if ``True``, the starting index of the waveform
and label is random if the length is longer than the minimum
length in the mini-batch.
"""
def __init__(
self,
pad: bool = False,
rand_crop: bool = True,
) -> None:
self.pad = pad
self.rand_crop = rand_crop
def __call__(self, batch: List[Tuple[Tensor, Tensor, int]]) -> Dict:
"""
Args:
batch (List[Tuple(Tensor, Tensor, int)]):
The list of tuples that contains the waveforms, labels, and audio lengths.
Returns:
Dictionary
"input": Tuple of waveforms and lengths.
waveforms Tensor with dimensions `(batch, time)`.
lengths Tensor with dimension `(batch,)`.
"label": None
"""
if self.pad:
num_frames = max([sample[0].shape[1] for sample in batch])
else:
num_frames = min([sample[0].shape[1] for sample in batch])
waveforms, lengths = [], []
for sample in batch:
waveform, length = sample
waveform, _, length = _crop_audio_label(waveform, None, length, num_frames, self.rand_crop)
waveforms.append(waveform)
lengths.append(length)
# make sure the shapes are the same if not apply zero-padding
if not self.pad:
assert all(
[waveform.shape[0] == waveforms[0].shape[0] for waveform in waveforms]
), "The dimensions of the waveforms should be identical in the same batch."
waveforms = torch.nn.utils.rnn.pad_sequence(waveforms, batch_first=True)
lengths = torch.tensor(lengths)
batch = Batch((waveforms, lengths), (None,))
return batch
|