File: additive_synthesis_tutorial.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (319 lines) | stat: -rw-r--r-- 9,507 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# -*- coding: utf-8 -*-
"""
Additive Synthesis
==================

**Author**: `Moto Hira <moto@meta.com>`__

This tutorial is the continuation of
`Oscillator and ADSR Envelope <./oscillator_tutorial.html>`__.

This tutorial shows how to perform additive synthesis and subtractive
synthesis using TorchAudio's DSP functions.

Additive synthesis creates timbre by combining multiple waveform.
Subtractive synthesis creates timbre by applying filters.

.. warning::
   This tutorial requires prototype DSP features, which are
   available in nightly builds.

   Please refer to https://pytorch.org/get-started/locally
   for instructions for installing a nightly build.
"""

import torch
import torchaudio

print(torch.__version__)
print(torchaudio.__version__)

######################################################################
# Overview
# --------
#
#

try:
    from torchaudio.prototype.functional import adsr_envelope, extend_pitch, oscillator_bank
except ModuleNotFoundError:
    print(
        "Failed to import prototype DSP features. "
        "Please install torchaudio nightly builds. "
        "Please refer to https://pytorch.org/get-started/locally "
        "for instructions to install a nightly build."
    )
    raise

import matplotlib.pyplot as plt
from IPython.display import Audio


######################################################################
# Creating multiple frequency pitches
# -----------------------------------
#
# The core of additive synthesis is oscillator. We create a timbre by
# summing up the multiple waveforms generated by oscillator.
#
# In `the oscillator tutorial <./oscillator_tutorial.html>`__, we used
# :py:func:`~torchaudio.prototype.functional.oscillator_bank` and
# :py:func:`~torchaudio.prototype.functional.adsr_envelope` to generate
# various waveforms.
#
# In this tutorial, we use
# :py:func:`~torchaudio.prototype.functional.extend_pitch` to create
# a timbre from base frequency.
#

######################################################################
#
# First, we define some constants and helper function that we use
# throughout the tutorial.


PI = torch.pi
PI2 = 2 * torch.pi

F0 = 344.0  # fundamental frequency
DURATION = 1.1  # [seconds]
SAMPLE_RATE = 16_000  # [Hz]

NUM_FRAMES = int(DURATION * SAMPLE_RATE)

######################################################################
#


def plot(freq, amp, waveform, sample_rate, zoom=None, vol=0.1):
    t = (torch.arange(waveform.size(0)) / sample_rate).numpy()

    fig, axes = plt.subplots(4, 1, sharex=True)
    axes[0].plot(t, freq.numpy())
    axes[0].set(title=f"Oscillator bank (bank size: {amp.size(-1)})", ylabel="Frequency [Hz]", ylim=[-0.03, None])
    axes[1].plot(t, amp.numpy())
    axes[1].set(ylabel="Amplitude", ylim=[-0.03 if torch.all(amp >= 0.0) else None, None])
    axes[2].plot(t, waveform)
    axes[2].set(ylabel="Waveform")
    axes[3].specgram(waveform, Fs=sample_rate)
    axes[3].set(ylabel="Spectrogram", xlabel="Time [s]", xlim=[-0.01, t[-1] + 0.01])

    for i in range(4):
        axes[i].grid(True)
    pos = axes[2].get_position()
    fig.tight_layout()

    if zoom is not None:
        ax = fig.add_axes([pos.x0 + 0.02, pos.y0 + 0.03, pos.width / 2.5, pos.height / 2.0])
        ax.plot(t, waveform)
        ax.set(xlim=zoom, xticks=[], yticks=[])

    waveform /= waveform.abs().max()
    return Audio(vol * waveform, rate=sample_rate, normalize=False)


######################################################################
# Harmonic Overtones
# -------------------
#
# Harmonic overtones are frequency components that are an integer
# multiple of the fundamental frequency.
#
# We look at how to generate the common waveforms that are used in
# synthesizers. That is,
#
#  - Sawtooth wave
#  - Square wave
#  - Triangle wave
#

######################################################################
# Sawtooth wave
# ~~~~~~~~~~~~~
#
# `Sawtooth wave <https://en.wikipedia.org/wiki/Sawtooth_wave>`_ can be
# expressed as the following. It contains all the integer harmonics, so
# it is commonly used in subtractive synthesis as well.
#
# .. math::
#
#    \begin{align*}
#    y_t &= \sum_{k=1}^{K} A_k \sin ( 2 \pi f_k t ) \\
#    \text{where} \\
#    f_k &= k f_0 \\
#    A_k &= -\frac{ (-1) ^k }{k \pi}
#    \end{align*}
#

######################################################################
# The following function takes fundamental frequencies and amplitudes,
# and adds extend pitch in accordance with the formula above.
#


def sawtooth_wave(freq0, amp0, num_pitches, sample_rate):
    freq = extend_pitch(freq0, num_pitches)

    mults = [-((-1) ** i) / (PI * i) for i in range(1, 1 + num_pitches)]
    amp = extend_pitch(amp0, mults)
    waveform = oscillator_bank(freq, amp, sample_rate=sample_rate)
    return freq, amp, waveform


######################################################################
#
# Now synthesize a waveform
#

freq0 = torch.full((NUM_FRAMES, 1), F0)
amp0 = torch.ones((NUM_FRAMES, 1))
freq, amp, waveform = sawtooth_wave(freq0, amp0, int(SAMPLE_RATE / F0), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))

######################################################################
#
# It is possible to oscillate the base frequency to create a
# time-varying tone based on sawtooth wave.
#

fm = 10  # rate at which the frequency oscillates [Hz]
f_dev = 0.1 * F0  # the degree of frequency oscillation [Hz]

phase = torch.linspace(0, fm * PI2 * DURATION, NUM_FRAMES)
freq0 = F0 + f_dev * torch.sin(phase).unsqueeze(-1)

freq, amp, waveform = sawtooth_wave(freq0, amp0, int(SAMPLE_RATE / F0), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))

######################################################################
# Square wave
# ~~~~~~~~~~~
#
# `Square wave <https://en.wikipedia.org/wiki/Square_wave>`_ contains
# only odd-integer harmonics.
#
# .. math::
#
#    \begin{align*}
#    y_t &= \sum_{k=0}^{K-1} A_k \sin ( 2 \pi f_k t ) \\
#    \text{where} \\
#    f_k &= n f_0 \\
#    A_k &= \frac{ 4 }{n \pi} \\
#    n   &= 2k + 1
#    \end{align*}


def square_wave(freq0, amp0, num_pitches, sample_rate):
    mults = [2.0 * i + 1.0 for i in range(num_pitches)]
    freq = extend_pitch(freq0, mults)

    mults = [4 / (PI * (2.0 * i + 1.0)) for i in range(num_pitches)]
    amp = extend_pitch(amp0, mults)

    waveform = oscillator_bank(freq, amp, sample_rate=sample_rate)
    return freq, amp, waveform


######################################################################
#

freq0 = torch.full((NUM_FRAMES, 1), F0)
amp0 = torch.ones((NUM_FRAMES, 1))
freq, amp, waveform = square_wave(freq0, amp0, int(SAMPLE_RATE / F0 / 2), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))

######################################################################
# Triangle wave
# ~~~~~~~~~~~~~
#
# `Triangle wave <https://en.wikipedia.org/wiki/Triangle_wave>`_
# also only contains odd-integer harmonics.
#
# .. math::
#
#    \begin{align*}
#    y_t &= \sum_{k=0}^{K-1} A_k \sin ( 2 \pi f_k t ) \\
#    \text{where} \\
#    f_k &= n f_0 \\
#    A_k &= (-1) ^ k \frac{8}{(n\pi) ^ 2} \\
#    n   &= 2k + 1
#    \end{align*}


def triangle_wave(freq0, amp0, num_pitches, sample_rate):
    mults = [2.0 * i + 1.0 for i in range(num_pitches)]
    freq = extend_pitch(freq0, mults)

    c = 8 / (PI**2)
    mults = [c * ((-1) ** i) / ((2.0 * i + 1.0) ** 2) for i in range(num_pitches)]
    amp = extend_pitch(amp0, mults)

    waveform = oscillator_bank(freq, amp, sample_rate=sample_rate)
    return freq, amp, waveform


######################################################################
#

freq, amp, waveform = triangle_wave(freq0, amp0, int(SAMPLE_RATE / F0 / 2), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))

######################################################################
# Inharmonic Paritials
# --------------------
#
# Inharmonic partials refer to freqencies that are not integer multiple
# of fundamental frequency.
#
# They are essential in re-creating realistic sound or
# making the result of synthesis more interesting.
#

######################################################################
# Bell sound
# ~~~~~~~~~~
#
# https://computermusicresource.com/Simple.bell.tutorial.html
#

num_tones = 9
duration = 2.0
num_frames = int(SAMPLE_RATE * duration)

freq0 = torch.full((num_frames, 1), F0)
mults = [0.56, 0.92, 1.19, 1.71, 2, 2.74, 3.0, 3.76, 4.07]
freq = extend_pitch(freq0, mults)

amp = adsr_envelope(
    num_frames=num_frames,
    attack=0.002,
    decay=0.998,
    sustain=0.0,
    release=0.0,
    n_decay=2,
)
amp = torch.stack([amp * (0.5**i) for i in range(num_tones)], dim=-1)

waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)

plot(freq, amp, waveform, SAMPLE_RATE, vol=0.4)

######################################################################
#
# As a comparison, the following is the harmonic version of the above.
# Only frequency values are different.
# The number of overtones and its amplitudes are same.
#

freq = extend_pitch(freq0, num_tones)
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)

plot(freq, amp, waveform, SAMPLE_RATE)

######################################################################
# References
# ----------
#
# - https://en.wikipedia.org/wiki/Additive_synthesis
# - https://computermusicresource.com/Simple.bell.tutorial.html
# - https://computermusicresource.com/Definitions/additive.synthesis.html