1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
# -*- coding: utf-8 -*-
"""
Additive Synthesis
==================
**Author**: `Moto Hira <moto@meta.com>`__
This tutorial is the continuation of
`Oscillator and ADSR Envelope <./oscillator_tutorial.html>`__.
This tutorial shows how to perform additive synthesis and subtractive
synthesis using TorchAudio's DSP functions.
Additive synthesis creates timbre by combining multiple waveform.
Subtractive synthesis creates timbre by applying filters.
.. warning::
This tutorial requires prototype DSP features, which are
available in nightly builds.
Please refer to https://pytorch.org/get-started/locally
for instructions for installing a nightly build.
"""
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
# Overview
# --------
#
#
try:
from torchaudio.prototype.functional import adsr_envelope, extend_pitch, oscillator_bank
except ModuleNotFoundError:
print(
"Failed to import prototype DSP features. "
"Please install torchaudio nightly builds. "
"Please refer to https://pytorch.org/get-started/locally "
"for instructions to install a nightly build."
)
raise
import matplotlib.pyplot as plt
from IPython.display import Audio
######################################################################
# Creating multiple frequency pitches
# -----------------------------------
#
# The core of additive synthesis is oscillator. We create a timbre by
# summing up the multiple waveforms generated by oscillator.
#
# In `the oscillator tutorial <./oscillator_tutorial.html>`__, we used
# :py:func:`~torchaudio.prototype.functional.oscillator_bank` and
# :py:func:`~torchaudio.prototype.functional.adsr_envelope` to generate
# various waveforms.
#
# In this tutorial, we use
# :py:func:`~torchaudio.prototype.functional.extend_pitch` to create
# a timbre from base frequency.
#
######################################################################
#
# First, we define some constants and helper function that we use
# throughout the tutorial.
PI = torch.pi
PI2 = 2 * torch.pi
F0 = 344.0 # fundamental frequency
DURATION = 1.1 # [seconds]
SAMPLE_RATE = 16_000 # [Hz]
NUM_FRAMES = int(DURATION * SAMPLE_RATE)
######################################################################
#
def plot(freq, amp, waveform, sample_rate, zoom=None, vol=0.1):
t = (torch.arange(waveform.size(0)) / sample_rate).numpy()
fig, axes = plt.subplots(4, 1, sharex=True)
axes[0].plot(t, freq.numpy())
axes[0].set(title=f"Oscillator bank (bank size: {amp.size(-1)})", ylabel="Frequency [Hz]", ylim=[-0.03, None])
axes[1].plot(t, amp.numpy())
axes[1].set(ylabel="Amplitude", ylim=[-0.03 if torch.all(amp >= 0.0) else None, None])
axes[2].plot(t, waveform)
axes[2].set(ylabel="Waveform")
axes[3].specgram(waveform, Fs=sample_rate)
axes[3].set(ylabel="Spectrogram", xlabel="Time [s]", xlim=[-0.01, t[-1] + 0.01])
for i in range(4):
axes[i].grid(True)
pos = axes[2].get_position()
fig.tight_layout()
if zoom is not None:
ax = fig.add_axes([pos.x0 + 0.02, pos.y0 + 0.03, pos.width / 2.5, pos.height / 2.0])
ax.plot(t, waveform)
ax.set(xlim=zoom, xticks=[], yticks=[])
waveform /= waveform.abs().max()
return Audio(vol * waveform, rate=sample_rate, normalize=False)
######################################################################
# Harmonic Overtones
# -------------------
#
# Harmonic overtones are frequency components that are an integer
# multiple of the fundamental frequency.
#
# We look at how to generate the common waveforms that are used in
# synthesizers. That is,
#
# - Sawtooth wave
# - Square wave
# - Triangle wave
#
######################################################################
# Sawtooth wave
# ~~~~~~~~~~~~~
#
# `Sawtooth wave <https://en.wikipedia.org/wiki/Sawtooth_wave>`_ can be
# expressed as the following. It contains all the integer harmonics, so
# it is commonly used in subtractive synthesis as well.
#
# .. math::
#
# \begin{align*}
# y_t &= \sum_{k=1}^{K} A_k \sin ( 2 \pi f_k t ) \\
# \text{where} \\
# f_k &= k f_0 \\
# A_k &= -\frac{ (-1) ^k }{k \pi}
# \end{align*}
#
######################################################################
# The following function takes fundamental frequencies and amplitudes,
# and adds extend pitch in accordance with the formula above.
#
def sawtooth_wave(freq0, amp0, num_pitches, sample_rate):
freq = extend_pitch(freq0, num_pitches)
mults = [-((-1) ** i) / (PI * i) for i in range(1, 1 + num_pitches)]
amp = extend_pitch(amp0, mults)
waveform = oscillator_bank(freq, amp, sample_rate=sample_rate)
return freq, amp, waveform
######################################################################
#
# Now synthesize a waveform
#
freq0 = torch.full((NUM_FRAMES, 1), F0)
amp0 = torch.ones((NUM_FRAMES, 1))
freq, amp, waveform = sawtooth_wave(freq0, amp0, int(SAMPLE_RATE / F0), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))
######################################################################
#
# It is possible to oscillate the base frequency to create a
# time-varying tone based on sawtooth wave.
#
fm = 10 # rate at which the frequency oscillates [Hz]
f_dev = 0.1 * F0 # the degree of frequency oscillation [Hz]
phase = torch.linspace(0, fm * PI2 * DURATION, NUM_FRAMES)
freq0 = F0 + f_dev * torch.sin(phase).unsqueeze(-1)
freq, amp, waveform = sawtooth_wave(freq0, amp0, int(SAMPLE_RATE / F0), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))
######################################################################
# Square wave
# ~~~~~~~~~~~
#
# `Square wave <https://en.wikipedia.org/wiki/Square_wave>`_ contains
# only odd-integer harmonics.
#
# .. math::
#
# \begin{align*}
# y_t &= \sum_{k=0}^{K-1} A_k \sin ( 2 \pi f_k t ) \\
# \text{where} \\
# f_k &= n f_0 \\
# A_k &= \frac{ 4 }{n \pi} \\
# n &= 2k + 1
# \end{align*}
def square_wave(freq0, amp0, num_pitches, sample_rate):
mults = [2.0 * i + 1.0 for i in range(num_pitches)]
freq = extend_pitch(freq0, mults)
mults = [4 / (PI * (2.0 * i + 1.0)) for i in range(num_pitches)]
amp = extend_pitch(amp0, mults)
waveform = oscillator_bank(freq, amp, sample_rate=sample_rate)
return freq, amp, waveform
######################################################################
#
freq0 = torch.full((NUM_FRAMES, 1), F0)
amp0 = torch.ones((NUM_FRAMES, 1))
freq, amp, waveform = square_wave(freq0, amp0, int(SAMPLE_RATE / F0 / 2), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))
######################################################################
# Triangle wave
# ~~~~~~~~~~~~~
#
# `Triangle wave <https://en.wikipedia.org/wiki/Triangle_wave>`_
# also only contains odd-integer harmonics.
#
# .. math::
#
# \begin{align*}
# y_t &= \sum_{k=0}^{K-1} A_k \sin ( 2 \pi f_k t ) \\
# \text{where} \\
# f_k &= n f_0 \\
# A_k &= (-1) ^ k \frac{8}{(n\pi) ^ 2} \\
# n &= 2k + 1
# \end{align*}
def triangle_wave(freq0, amp0, num_pitches, sample_rate):
mults = [2.0 * i + 1.0 for i in range(num_pitches)]
freq = extend_pitch(freq0, mults)
c = 8 / (PI**2)
mults = [c * ((-1) ** i) / ((2.0 * i + 1.0) ** 2) for i in range(num_pitches)]
amp = extend_pitch(amp0, mults)
waveform = oscillator_bank(freq, amp, sample_rate=sample_rate)
return freq, amp, waveform
######################################################################
#
freq, amp, waveform = triangle_wave(freq0, amp0, int(SAMPLE_RATE / F0 / 2), SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, zoom=(1 / F0, 3 / F0))
######################################################################
# Inharmonic Paritials
# --------------------
#
# Inharmonic partials refer to freqencies that are not integer multiple
# of fundamental frequency.
#
# They are essential in re-creating realistic sound or
# making the result of synthesis more interesting.
#
######################################################################
# Bell sound
# ~~~~~~~~~~
#
# https://computermusicresource.com/Simple.bell.tutorial.html
#
num_tones = 9
duration = 2.0
num_frames = int(SAMPLE_RATE * duration)
freq0 = torch.full((num_frames, 1), F0)
mults = [0.56, 0.92, 1.19, 1.71, 2, 2.74, 3.0, 3.76, 4.07]
freq = extend_pitch(freq0, mults)
amp = adsr_envelope(
num_frames=num_frames,
attack=0.002,
decay=0.998,
sustain=0.0,
release=0.0,
n_decay=2,
)
amp = torch.stack([amp * (0.5**i) for i in range(num_tones)], dim=-1)
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE, vol=0.4)
######################################################################
#
# As a comparison, the following is the harmonic version of the above.
# Only frequency values are different.
# The number of overtones and its amplitudes are same.
#
freq = extend_pitch(freq0, num_tones)
waveform = oscillator_bank(freq, amp, sample_rate=SAMPLE_RATE)
plot(freq, amp, waveform, SAMPLE_RATE)
######################################################################
# References
# ----------
#
# - https://en.wikipedia.org/wiki/Additive_synthesis
# - https://computermusicresource.com/Simple.bell.tutorial.html
# - https://computermusicresource.com/Definitions/additive.synthesis.html
|