1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
|
"""
Accelerated video decoding with NVDEC
=====================================
.. _nvdec_tutorial:
**Author**: `Moto Hira <moto@meta.com>`__
This tutorial shows how to use NVIDIA’s hardware video decoder (NVDEC)
with TorchAudio, and how it improves the performance of video decoding.
"""
######################################################################
#
# .. note::
#
# This tutorial requires FFmpeg libraries compiled with HW
# acceleration enabled.
#
# Please refer to
# :ref:`Enabling GPU video decoder/encoder <enabling_hw_decoder>`
# for how to build FFmpeg with HW acceleration.
#
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
#
import os
import time
import matplotlib.pyplot as plt
from torchaudio.io import StreamReader
######################################################################
#
# Check the prerequisites
# -----------------------
#
# First, we check that TorchAudio correctly detects FFmpeg libraries
# that support HW decoder/encoder.
#
from torchaudio.utils import ffmpeg_utils
######################################################################
#
print("FFmpeg Library versions:")
for k, ver in ffmpeg_utils.get_versions().items():
print(f" {k}:\t{'.'.join(str(v) for v in ver)}")
######################################################################
#
print("Available NVDEC Decoders:")
for k in ffmpeg_utils.get_video_decoders().keys():
if "cuvid" in k:
print(f" - {k}")
######################################################################
#
print("Avaialbe GPU:")
print(torch.cuda.get_device_properties(0))
######################################################################
#
# We will use the following video which has the following properties;
#
# - Codec: H.264
# - Resolution: 960x540
# - FPS: 29.97
# - Pixel format: YUV420P
#
# .. raw:: html
#
# <video style="max-width: 100%" controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4" type="video/mp4">
# </video>
######################################################################
#
src = torchaudio.utils.download_asset(
"tutorial-assets/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4_small.mp4"
)
######################################################################
# Decoding videos with NVDEC
# --------------------------
#
# To use HW video decoder, you need to specify the HW decoder when
# defining the output video stream by passing ``decoder`` option to
# :py:meth:`~torchaudio.io.StreamReader.add_video_stream` method.
#
s = StreamReader(src)
s.add_video_stream(5, decoder="h264_cuvid")
s.fill_buffer()
(video,) = s.pop_chunks()
######################################################################
#
# The video frames are decoded and returned as tensor of NCHW format.
print(video.shape, video.dtype)
######################################################################
#
# By default, the decoded frames are sent back to CPU memory, and
# CPU tensors are created.
print(video.device)
######################################################################
#
# By specifying ``hw_accel`` option, you can convert the decoded frames
# to CUDA tensor.
# ``hw_accel`` option takes string values and pass it
# to :py:class:`torch.device`.
#
# .. note::
#
# Currently, ``hw_accel`` option and
# :py:meth:`~torchaudio.io.StreamReader.add_basic_video_stream`
# are not compatible. ``add_basic_video_stream`` adds post-decoding
# process, which is designed for frames in CPU memory.
# Please use :py:meth:`~torchaudio.io.StreamReader.add_video_stream`.
#
s = StreamReader(src)
s.add_video_stream(5, decoder="h264_cuvid", hw_accel="cuda:0")
s.fill_buffer()
(video,) = s.pop_chunks()
print(video.shape, video.dtype, video.device)
######################################################################
# .. note::
#
# When there are multiple of GPUs available, ``StreamReader`` by
# default uses the first GPU. You can change this by providing
# ``"gpu"`` option.
#
# .. code::
#
# # Video data is sent to CUDA device 0, decoded and
# # converted on the same device.
# s.add_video_stream(
# ...,
# decoder="h264_cuvid",
# decoder_option={"gpu": "0"},
# hw_accel="cuda:0",
# )
#
# .. note::
#
# ``"gpu"`` option and ``hw_accel`` option can be specified
# independently. If they do not match, decoded frames are
# transfered to the device specified by ``hw_accell``
# automatically.
#
# .. code::
#
# # Video data is sent to CUDA device 0, and decoded there.
# # Then it is transfered to CUDA device 1, and converted to
# # CUDA tensor.
# s.add_video_stream(
# ...,
# decoder="h264_cuvid",
# decoder_option={"gpu": "0"},
# hw_accel="cuda:1",
# )
######################################################################
# Visualization
# -------------
#
# Let's look at the frames decoded by HW decoder and compare them
# against equivalent results from software decoders.
#
# The following function seeks into the given timestamp and decode one
# frame with the specificed decoder.
def test_decode(decoder: str, seek: float):
s = StreamReader(src)
s.seek(seek)
s.add_video_stream(1, decoder=decoder)
s.fill_buffer()
(video,) = s.pop_chunks()
return video[0]
######################################################################
#
timestamps = [12, 19, 45, 131, 180]
cpu_frames = [test_decode(decoder="h264", seek=ts) for ts in timestamps]
cuda_frames = [test_decode(decoder="h264_cuvid", seek=ts) for ts in timestamps]
######################################################################
#
# .. note::
#
# Currently, HW decoder does not support colorspace conversion.
# Decoded frames are YUV format.
# The following function performs YUV to RGB covnersion
# (and axis shuffling for plotting).
def yuv_to_rgb(frames):
frames = frames.cpu().to(torch.float)
y = frames[..., 0, :, :]
u = frames[..., 1, :, :]
v = frames[..., 2, :, :]
y /= 255
u = u / 255 - 0.5
v = v / 255 - 0.5
r = y + 1.14 * v
g = y + -0.396 * u - 0.581 * v
b = y + 2.029 * u
rgb = torch.stack([r, g, b], -1)
rgb = (rgb * 255).clamp(0, 255).to(torch.uint8)
return rgb.numpy()
######################################################################
#
# Now we visualize the resutls.
#
def plot():
n_rows = len(timestamps)
fig, axes = plt.subplots(n_rows, 2, figsize=[12.8, 16.0])
for i in range(n_rows):
axes[i][0].imshow(yuv_to_rgb(cpu_frames[i]))
axes[i][1].imshow(yuv_to_rgb(cuda_frames[i]))
axes[0][0].set_title("Software decoder")
axes[0][1].set_title("HW decoder")
plt.setp(axes, xticks=[], yticks=[])
plt.tight_layout()
plot()
######################################################################
#
# They are indistinguishable to the eyes of the author.
# Feel free to let us know if you spot something. :)
#
######################################################################
# HW resizing and cropping
# ------------------------
#
# You can use ``decoder_option`` argument to provide decoder-specific
# options.
#
# The following options are often relevant in preprocessing.
#
# - ``resize``: Resize the frame into ``(width)x(height)``.
# - ``crop``: Crop the frame ``(top)x(bottom)x(left)x(right)``.
# Note that the specified values are the amount of rows/columns removed.
# The final image size is ``(width - left - right)x(height - top -bottom)``.
# If ``crop`` and ``resize`` options are used together,
# ``crop`` is performed first.
#
# For other available options, please run
# ``ffmpeg -h decoder=h264_cuvid``.
#
def test_options(option):
s = StreamReader(src)
s.seek(87)
s.add_video_stream(1, decoder="h264_cuvid", hw_accel="cuda:0", decoder_option=option)
s.fill_buffer()
(video,) = s.pop_chunks()
print(f"Option: {option}:\t{video.shape}")
return video[0]
######################################################################
#
original = test_options(option=None)
resized = test_options(option={"resize": "480x270"})
cropped = test_options(option={"crop": "135x135x240x240"})
cropped_and_resized = test_options(option={"crop": "135x135x240x240", "resize": "640x360"})
######################################################################
#
def plot():
fig, axes = plt.subplots(2, 2, figsize=[12.8, 9.6])
axes[0][0].imshow(yuv_to_rgb(original))
axes[0][1].imshow(yuv_to_rgb(resized))
axes[1][0].imshow(yuv_to_rgb(cropped))
axes[1][1].imshow(yuv_to_rgb(cropped_and_resized))
axes[0][0].set_title("Original")
axes[0][1].set_title("Resized")
axes[1][0].set_title("Cropped")
axes[1][1].set_title("Cropped and resized")
plt.tight_layout()
return fig
plot()
######################################################################
# Comparing resizing methods
# --------------------------
#
# Unlike software scaling, NVDEC does not provide an option to choose
# the scaling algorithm.
# In ML applicatoins, it is often necessary to construct a
# preprocessing pipeline with a similar numerical property.
# So here we compare the result of hardware resizing with software
# resizing of different algorithms.
#
# We will use the following video, which contains the test pattern
# generated using the following command.
#
# .. code::
#
# ffmpeg -y -f lavfi -t 12.05 -i mptestsrc -movflags +faststart mptestsrc.mp4
#
# .. raw:: html
#
# <video style="max-width: 100%" controls>
# <source src="https://download.pytorch.org/torchaudio/tutorial-assets/mptestsrc.mp4" type="video/mp4">
# </video>
######################################################################
#
test_src = torchaudio.utils.download_asset("tutorial-assets/mptestsrc.mp4")
######################################################################
# The following function decodes video and
# apply the specified scaling algorithm.
#
def decode_resize_ffmpeg(mode, height, width, seek):
filter_desc = None if mode is None else f"scale={width}:{height}:sws_flags={mode}"
s = StreamReader(test_src)
s.add_video_stream(1, filter_desc=filter_desc)
s.seek(seek)
s.fill_buffer()
(chunk,) = s.pop_chunks()
return chunk
######################################################################
# The following function uses HW decoder to decode video and resize.
#
def decode_resize_cuvid(height, width, seek):
s = StreamReader(test_src)
s.add_video_stream(1, decoder="h264_cuvid", decoder_option={"resize": f"{width}x{height}"}, hw_accel="cuda:0")
s.seek(seek)
s.fill_buffer()
(chunk,) = s.pop_chunks()
return chunk.cpu()
######################################################################
# Now we execute them and visualize the resulting frames.
params = {"height": 224, "width": 224, "seek": 3}
frames = [
decode_resize_ffmpeg(None, **params),
decode_resize_ffmpeg("neighbor", **params),
decode_resize_ffmpeg("bilinear", **params),
decode_resize_ffmpeg("bicubic", **params),
decode_resize_cuvid(**params),
decode_resize_ffmpeg("spline", **params),
decode_resize_ffmpeg("lanczos:param0=1", **params),
decode_resize_ffmpeg("lanczos:param0=3", **params),
decode_resize_ffmpeg("lanczos:param0=5", **params),
]
######################################################################
#
def plot():
fig, axes = plt.subplots(3, 3, figsize=[12.8, 15.2])
for i, f in enumerate(frames):
h, w = f.shape[2:4]
f = f[..., : h // 4, : w // 4]
axes[i // 3][i % 3].imshow(yuv_to_rgb(f[0]))
axes[0][0].set_title("Original")
axes[0][1].set_title("nearest neighbor")
axes[0][2].set_title("bilinear")
axes[1][0].set_title("bicubic")
axes[1][1].set_title("NVDEC")
axes[1][2].set_title("spline")
axes[2][0].set_title("lanczos(1)")
axes[2][1].set_title("lanczos(3)")
axes[2][2].set_title("lanczos(5)")
plt.setp(axes, xticks=[], yticks=[])
plt.tight_layout()
plot()
######################################################################
# None of them is exactly the same. To the eyes of authors, lanczos(1)
# appears to be most similar to NVDEC.
# The bicubic looks close as well.
######################################################################
#
# Benchmark NVDEC with StreamReader
# ---------------------------------
#
# In this section, we compare the performace of software video
# decoding and HW video decoding.
#
######################################################################
# Decode as CUDA frames
# ---------------------
#
# First, we compare the time it takes for software decoder and
# hardware encoder to decode the same video.
# To make the result comparable, when using software decoder, we move
# the resulting tensor to CUDA.
#
# The procedures to test look like the following
#
# - Use hardware decoder and place data on CUDA directly
# - Use software decoder, generate CPU Tensors and move them to CUDA.
#
# .. note:
#
# Because HW decoder currently only supports reading videos as
# YUV444P format, we decode frames into YUV444P format for the case of
# software decoder as well.
#
######################################################################
# The following function implements the hardware decoder test case.
def test_decode_cuda(src, decoder, hw_accel="cuda", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(frames_per_chunk, decoder=decoder, hw_accel=hw_accel)
num_frames = 0
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
elapsed = time.monotonic() - t0
print(f" - Shape: {chunk.shape}")
fps = num_frames / elapsed
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
######################################################################
# The following function implements the software decoder test case.
def test_decode_cpu(src, threads, decoder=None, frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(frames_per_chunk, decoder=decoder, decoder_option={"threads": f"{threads}"})
num_frames = 0
device = torch.device("cuda")
t0 = time.monotonic()
for i, (chunk,) in enumerate(s.stream()):
if i == 0:
print(f" - Shape: {chunk.shape}")
num_frames += chunk.shape[0]
chunk = chunk.to(device)
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
######################################################################
# For each resolution of video, we run multiple software decoder test
# cases with different number of threads.
def run_decode_tests(src, frames_per_chunk=5):
fps = []
print(f"Testing: {os.path.basename(src)}")
for threads in [1, 4, 8, 16]:
print(f"* Software decoding (num_threads={threads})")
fps.append(test_decode_cpu(src, threads))
print("* Hardware decoding")
fps.append(test_decode_cuda(src, decoder="h264_cuvid"))
return fps
######################################################################
# Now we run the tests with videos of different resolutions.
#
# QVGA
# ----
src_qvga = torchaudio.utils.download_asset("tutorial-assets/testsrc2_qvga.h264.mp4")
fps_qvga = run_decode_tests(src_qvga)
######################################################################
# VGA
# ---
src_vga = torchaudio.utils.download_asset("tutorial-assets/testsrc2_vga.h264.mp4")
fps_vga = run_decode_tests(src_vga)
######################################################################
# XGA
# ---
src_xga = torchaudio.utils.download_asset("tutorial-assets/testsrc2_xga.h264.mp4")
fps_xga = run_decode_tests(src_xga)
######################################################################
# Result
# ------
#
# Now we plot the result.
def plot():
fig, ax = plt.subplots(figsize=[9.6, 6.4])
for items in zip(fps_qvga, fps_vga, fps_xga, "ov^sx"):
ax.plot(items[:-1], marker=items[-1])
ax.grid(axis="both")
ax.set_xticks([0, 1, 2], ["QVGA (320x240)", "VGA (640x480)", "XGA (1024x768)"])
ax.legend(
[
"Software Decoding (threads=1)",
"Software Decoding (threads=4)",
"Software Decoding (threads=8)",
"Software Decoding (threads=16)",
"Hardware Decoding (CUDA Tensor)",
]
)
ax.set_title("Speed of processing video frames")
ax.set_ylabel("Frames per second")
plt.tight_layout()
plot()
######################################################################
#
# We observe couple of things
#
# - Increasing the number of threads in software decoding makes the
# pipeline faster, but the performance saturates around 8 threads.
# - The performance gain from using hardware decoder depends on the
# resolution of video.
# - At lower resolutions like QVGA, hardware decoding is slower than
# software decoding
# - At higher resolutions like XGA, hardware decoding is faster
# than software decoding.
#
#
# It is worth noting that the performance gain also depends on the
# type of GPU.
# We observed that when decoding VGA videos using V100 or A100 GPUs,
# hardware decoders are slower than software decoders. But using A10
# GPU hardware deocder is faster than software decodr.
#
######################################################################
# Decode and resize
# -----------------
#
# Next, we add resize operation to the pipeline.
# We will compare the following pipelines.
#
# 1. Decode video using software decoder and read the frames as
# PyTorch Tensor. Resize the tensor using
# :py:func:`torch.nn.functional.interpolate`, then send
# the resulting tensor to CUDA device.
# 2. Decode video using software decoder, resize the frame with
# FFmpeg's filter graph, read the resized frames as PyTorch tensor,
# then send it to CUDA device.
# 3. Decode and resize video simulaneously with HW decoder, read the
# resulting frames as CUDA tensor.
#
# The pipeline 1 represents common video loading implementations.
#
# The pipeline 2 uses FFmpeg's filter graph, which allows to manipulate
# raw frames before converting them to Tensors.
#
# The pipeline 3 has the minimum amount of data transfer from CPU to
# CUDA, which significantly contribute to performant data loading.
#
######################################################################
# The following function implements the pipeline 1. It uses PyTorch's
# :py:func:`torch.nn.functional.interpolate`.
# We use ``bincubic`` mode, as we saw that the resulting frames are
# closest to NVDEC resizing.
#
def test_decode_then_resize(src, height, width, mode="bicubic", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(frames_per_chunk, decoder_option={"threads": "8"})
num_frames = 0
device = torch.device("cuda")
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
chunk = torch.nn.functional.interpolate(chunk, [height, width], mode=mode, antialias=True)
chunk = chunk.to(device)
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Shape: {chunk.shape}")
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
######################################################################
# The following function implements the pipeline 2. Frames are resized
# as part of decoding process, then sent to CUDA device.
#
# We use ``bincubic`` mode, to make the result comparable with
# PyTorch-based implementation above.
#
def test_decode_and_resize(src, height, width, mode="bicubic", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(
frames_per_chunk, filter_desc=f"scale={width}:{height}:sws_flags={mode}", decoder_option={"threads": "8"}
)
num_frames = 0
device = torch.device("cuda")
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
chunk = chunk.to(device)
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Shape: {chunk.shape}")
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
######################################################################
# The following function implements the pipeline 3. Resizing is
# performed by NVDEC and the resulting tensor is placed on CUDA memory.
def test_hw_decode_and_resize(src, decoder, decoder_option, hw_accel="cuda", frames_per_chunk=5):
s = StreamReader(src)
s.add_video_stream(5, decoder=decoder, decoder_option=decoder_option, hw_accel=hw_accel)
num_frames = 0
chunk = None
t0 = time.monotonic()
for (chunk,) in s.stream():
num_frames += chunk.shape[0]
elapsed = time.monotonic() - t0
fps = num_frames / elapsed
print(f" - Shape: {chunk.shape}")
print(f" - Processed {num_frames} frames in {elapsed:.2f} seconds. ({fps:.2f} fps)")
return fps
######################################################################
#
# The following function run the benchmark functions on given sources.
#
def run_resize_tests(src):
print(f"Testing: {os.path.basename(src)}")
height, width = 224, 224
print("* Software decoding with PyTorch interpolate")
cpu_resize1 = test_decode_then_resize(src, height=height, width=width)
print("* Software decoding with FFmpeg scale")
cpu_resize2 = test_decode_and_resize(src, height=height, width=width)
print("* Hardware decoding with resize")
cuda_resize = test_hw_decode_and_resize(src, decoder="h264_cuvid", decoder_option={"resize": f"{width}x{height}"})
return [cpu_resize1, cpu_resize2, cuda_resize]
######################################################################
#
# Now we run the tests.
######################################################################
# QVGA
# ----
fps_qvga = run_resize_tests(src_qvga)
######################################################################
# VGA
# ---
fps_vga = run_resize_tests(src_vga)
######################################################################
# XGA
# ---
fps_xga = run_resize_tests(src_xga)
######################################################################
# Result
# ------
# Now we plot the result.
#
def plot():
fig, ax = plt.subplots(figsize=[9.6, 6.4])
for items in zip(fps_qvga, fps_vga, fps_xga, "ov^sx"):
ax.plot(items[:-1], marker=items[-1])
ax.grid(axis="both")
ax.set_xticks([0, 1, 2], ["QVGA (320x240)", "VGA (640x480)", "XGA (1024x768)"])
ax.legend(
[
"Software decoding\nwith resize\n(PyTorch interpolate)",
"Software decoding\nwith resize\n(FFmpeg scale)",
"NVDEC\nwith resizing",
]
)
ax.set_title("Speed of processing video frames")
ax.set_xlabel("Input video resolution")
ax.set_ylabel("Frames per second")
plt.tight_layout()
plot()
######################################################################
#
# Hardware deocder shows a similar trend as previous experiment.
# In fact, the performance is almost the same. Hardware resizing has
# almost zero overhead for scaling down the frames.
#
# Software decoding also shows a similar trend. Performing resizing as
# part of decoding is faster. One possible explanation is that, video
# frames are internally stored as YUV420P, which has half the number
# of pixels compared to RGB24, or YUV444P. This means that if resizing
# before copying frame data to PyTorch tensor, the number of pixels
# manipulated and copied are smaller than the case where applying
# resizing after frames are converted to Tensor.
#
######################################################################
#
# Tag: :obj:`torchaudio.io`
|