1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
"""
Torchaudio-Squim: Non-intrusive Speech Assessment in TorchAudio
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
######################################################################
# Author: `Anurag Kumar <anuragkr90@meta.com>`__, `Zhaoheng
# Ni <zni@meta.com>`__
#
######################################################################
# 1. Overview
# ^^^^^^^^^^^
#
######################################################################
# This tutorial shows uses of Torchaudio-Squim to estimate objective and
# subjective metrics for assessment of speech quality and intelligibility.
#
# TorchAudio-Squim enables speech assessment in Torchaudio. It provides
# interface and pre-trained models to estimate various speech quality and
# intelligibility metrics. Currently, Torchaudio-Squim [1] supports
# reference-free estimation 3 widely used objective metrics:
#
# - Wideband Perceptual Estimation of Speech Quality (PESQ) [2]
#
# - Short-Time Objective Intelligibility (STOI) [3]
#
# - Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [4]
#
# It also supports estimation of subjective Mean Opinion Score (MOS) for a
# given audio waveform using Non-Matching References [1, 5].
#
# **References**
#
# [1] Kumar, Anurag, et al. “TorchAudio-Squim: Reference-less Speech
# Quality and Intelligibility measures in TorchAudio.” ICASSP 2023-2023
# IEEE International Conference on Acoustics, Speech and Signal Processing
# (ICASSP). IEEE, 2023.
#
# [2] I. Rec, “P.862.2: Wideband extension to recommendation P.862 for the
# assessment of wideband telephone networks and speech codecs,”
# International Telecommunication Union, CH–Geneva, 2005.
#
# [3] Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2010,
# March). A short-time objective intelligibility measure for
# time-frequency weighted noisy speech. In 2010 IEEE international
# conference on acoustics, speech and signal processing (pp. 4214-4217).
# IEEE.
#
# [4] Le Roux, Jonathan, et al. “SDR–half-baked or well done?.” ICASSP
# 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
# Processing (ICASSP). IEEE, 2019.
#
# [5] Manocha, Pranay, and Anurag Kumar. “Speech quality assessment
# through MOS using non-matching references.” Interspeech, 2022.
#
import torch
import torchaudio
print(torch.__version__)
print(torchaudio.__version__)
######################################################################
# 2. Preparation
# ^^^^^^^^^^^^^^
#
# First import the modules and define the helper functions.
#
# We will need torch, torchaudio to use Torchaudio-squim, Matplotlib to
# plot data, pystoi, pesq for computing reference metrics.
#
try:
from pesq import pesq
from pystoi import stoi
from torchaudio.pipelines import SQUIM_OBJECTIVE, SQUIM_SUBJECTIVE
except ImportError:
try:
import google.colab # noqa: F401
print(
"""
To enable running this notebook in Google Colab, install nightly
torch and torchaudio builds by adding the following code block to the top
of the notebook before running it:
!pip3 uninstall -y torch torchvision torchaudio
!pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu
!pip3 install pesq
!pip3 install pystoi
"""
)
except Exception:
pass
raise
import matplotlib.pyplot as plt
######################################################################
#
#
import torchaudio.functional as F
from IPython.display import Audio
from torchaudio.utils import download_asset
def si_snr(estimate, reference, epsilon=1e-8):
estimate = estimate - estimate.mean()
reference = reference - reference.mean()
reference_pow = reference.pow(2).mean(axis=1, keepdim=True)
mix_pow = (estimate * reference).mean(axis=1, keepdim=True)
scale = mix_pow / (reference_pow + epsilon)
reference = scale * reference
error = estimate - reference
reference_pow = reference.pow(2)
error_pow = error.pow(2)
reference_pow = reference_pow.mean(axis=1)
error_pow = error_pow.mean(axis=1)
si_snr = 10 * torch.log10(reference_pow) - 10 * torch.log10(error_pow)
return si_snr.item()
def plot(waveform, title, sample_rate=16000):
wav_numpy = waveform.numpy()
sample_size = waveform.shape[1]
time_axis = torch.arange(0, sample_size) / sample_rate
figure, axes = plt.subplots(2, 1)
axes[0].plot(time_axis, wav_numpy[0], linewidth=1)
axes[0].grid(True)
axes[1].specgram(wav_numpy[0], Fs=sample_rate)
figure.suptitle(title)
######################################################################
# 3. Load Speech and Noise Sample
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
SAMPLE_SPEECH = download_asset("tutorial-assets/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav")
SAMPLE_NOISE = download_asset("tutorial-assets/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo.wav")
######################################################################
#
#
WAVEFORM_SPEECH, SAMPLE_RATE_SPEECH = torchaudio.load(SAMPLE_SPEECH)
WAVEFORM_NOISE, SAMPLE_RATE_NOISE = torchaudio.load(SAMPLE_NOISE)
WAVEFORM_NOISE = WAVEFORM_NOISE[0:1, :]
######################################################################
# Currently, Torchaudio-Squim model only supports 16000 Hz sampling rate.
# Resample the waveforms if necessary.
#
if SAMPLE_RATE_SPEECH != 16000:
WAVEFORM_SPEECH = F.resample(WAVEFORM_SPEECH, SAMPLE_RATE_SPEECH, 16000)
if SAMPLE_RATE_NOISE != 16000:
WAVEFORM_NOISE = F.resample(WAVEFORM_NOISE, SAMPLE_RATE_NOISE, 16000)
######################################################################
# Trim waveforms so that they have the same number of frames.
#
if WAVEFORM_SPEECH.shape[1] < WAVEFORM_NOISE.shape[1]:
WAVEFORM_NOISE = WAVEFORM_NOISE[:, : WAVEFORM_SPEECH.shape[1]]
else:
WAVEFORM_SPEECH = WAVEFORM_SPEECH[:, : WAVEFORM_NOISE.shape[1]]
######################################################################
# Play speech sample
#
Audio(WAVEFORM_SPEECH.numpy()[0], rate=16000)
######################################################################
# Play noise sample
#
Audio(WAVEFORM_NOISE.numpy()[0], rate=16000)
######################################################################
# 4. Create distorted (noisy) speech samples
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
snr_dbs = torch.tensor([20, -5])
WAVEFORM_DISTORTED = F.add_noise(WAVEFORM_SPEECH, WAVEFORM_NOISE, snr_dbs)
######################################################################
# Play distorted speech with 20dB SNR
#
Audio(WAVEFORM_DISTORTED.numpy()[0], rate=16000)
######################################################################
# Play distorted speech with -5dB SNR
#
Audio(WAVEFORM_DISTORTED.numpy()[1], rate=16000)
######################################################################
# 5. Visualize the waveforms
# ^^^^^^^^^^^^^^^^^^^^^^^^^^
#
######################################################################
# Visualize speech sample
#
plot(WAVEFORM_SPEECH, "Clean Speech")
######################################################################
# Visualize noise sample
#
plot(WAVEFORM_NOISE, "Noise")
######################################################################
# Visualize distorted speech with 20dB SNR
#
plot(WAVEFORM_DISTORTED[0:1], f"Distorted Speech with {snr_dbs[0]}dB SNR")
######################################################################
# Visualize distorted speech with -5dB SNR
#
plot(WAVEFORM_DISTORTED[1:2], f"Distorted Speech with {snr_dbs[1]}dB SNR")
######################################################################
# 6. Predict Objective Metrics
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
######################################################################
# Get the pre-trained ``SquimObjective``\ model.
#
objective_model = SQUIM_OBJECTIVE.get_model()
######################################################################
# Compare model outputs with ground truths for distorted speech with 20dB
# SNR
#
stoi_hyp, pesq_hyp, si_sdr_hyp = objective_model(WAVEFORM_DISTORTED[0:1, :])
print(f"Estimated metrics for distorted speech at {snr_dbs[0]}dB are\n")
print(f"STOI: {stoi_hyp[0]}")
print(f"PESQ: {pesq_hyp[0]}")
print(f"SI-SDR: {si_sdr_hyp[0]}\n")
pesq_ref = pesq(16000, WAVEFORM_SPEECH[0].numpy(), WAVEFORM_DISTORTED[0].numpy(), mode="wb")
stoi_ref = stoi(WAVEFORM_SPEECH[0].numpy(), WAVEFORM_DISTORTED[0].numpy(), 16000, extended=False)
si_sdr_ref = si_snr(WAVEFORM_DISTORTED[0:1], WAVEFORM_SPEECH)
print(f"Reference metrics for distorted speech at {snr_dbs[0]}dB are\n")
print(f"STOI: {stoi_ref}")
print(f"PESQ: {pesq_ref}")
print(f"SI-SDR: {si_sdr_ref}")
######################################################################
# Compare model outputs with ground truths for distorted speech with -5dB
# SNR
#
stoi_hyp, pesq_hyp, si_sdr_hyp = objective_model(WAVEFORM_DISTORTED[1:2, :])
print(f"Estimated metrics for distorted speech at {snr_dbs[1]}dB are\n")
print(f"STOI: {stoi_hyp[0]}")
print(f"PESQ: {pesq_hyp[0]}")
print(f"SI-SDR: {si_sdr_hyp[0]}\n")
pesq_ref = pesq(16000, WAVEFORM_SPEECH[0].numpy(), WAVEFORM_DISTORTED[1].numpy(), mode="wb")
stoi_ref = stoi(WAVEFORM_SPEECH[0].numpy(), WAVEFORM_DISTORTED[1].numpy(), 16000, extended=False)
si_sdr_ref = si_snr(WAVEFORM_DISTORTED[1:2], WAVEFORM_SPEECH)
print(f"Reference metrics for distorted speech at {snr_dbs[1]}dB are\n")
print(f"STOI: {stoi_ref}")
print(f"PESQ: {pesq_ref}")
print(f"SI-SDR: {si_sdr_ref}")
######################################################################
# 7. Predict Mean Opinion Scores (Subjective) Metric
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
######################################################################
# Get the pre-trained ``SquimSubjective`` model.
#
subjective_model = SQUIM_SUBJECTIVE.get_model()
######################################################################
# Load a non-matching reference (NMR)
#
NMR_SPEECH = download_asset("tutorial-assets/ctc-decoding/1688-142285-0007.wav")
WAVEFORM_NMR, SAMPLE_RATE_NMR = torchaudio.load(NMR_SPEECH)
if SAMPLE_RATE_NMR != 16000:
WAVEFORM_NMR = F.resample(WAVEFORM_NMR, SAMPLE_RATE_NMR, 16000)
######################################################################
# Compute MOS metric for distorted speech with 20dB SNR
#
mos = subjective_model(WAVEFORM_DISTORTED[0:1, :], WAVEFORM_NMR)
print(f"Estimated MOS for distorted speech at {snr_dbs[0]}dB is MOS: {mos[0]}")
######################################################################
# Compute MOS metric for distorted speech with -5dB SNR
#
mos = subjective_model(WAVEFORM_DISTORTED[1:2, :], WAVEFORM_NMR)
print(f"Estimated MOS for distorted speech at {snr_dbs[1]}dB is MOS: {mos[0]}")
######################################################################
# 8. Comparison with ground truths and baselines
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Visualizing the estimated metrics by the ``SquimObjective`` and
# ``SquimSubjective`` models can help users better understand how the
# models can be applicable in real scenario. The graph below shows scatter
# plots of three different systems: MOSA-Net [1], AMSA [2], and the
# ``SquimObjective`` model, where y axis represents the estimated STOI,
# PESQ, and Si-SDR scores, and x axis represents the corresponding ground
# truth.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/objective_plot.png
# :width: 500px
# :align: center
#
# [1] Zezario, Ryandhimas E., Szu-Wei Fu, Fei Chen, Chiou-Shann Fuh,
# Hsin-Min Wang, and Yu Tsao. “Deep learning-based non-intrusive
# multi-objective speech assessment model with cross-domain features.”
# IEEE/ACM Transactions on Audio, Speech, and Language Processing 31
# (2022): 54-70.
#
# [2] Dong, Xuan, and Donald S. Williamson. “An attention enhanced
# multi-task model for objective speech assessment in real-world
# environments.” In ICASSP 2020-2020 IEEE International Conference on
# Acoustics, Speech and Signal Processing (ICASSP), pp. 911-915. IEEE,
# 2020.
#
######################################################################
# The graph below shows scatter plot of the ``SquimSubjective`` model,
# where y axis represents the estimated MOS metric score, and x axis
# represents the corresponding ground truth.
#
# .. image:: https://download.pytorch.org/torchaudio/tutorial-assets/subjective_plot.png
# :width: 500px
# :align: center
#
|