1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
import io
import os
import pathlib
import subprocess
import sys
from functools import partial
from typing import Optional
import torch
from parameterized import parameterized
from torchaudio._backend.ffmpeg import _parse_save_args
from torchaudio._backend.utils import get_save_func
from torchaudio.io import CodecConfig
from torchaudio_unittest.backend.dispatcher.sox.common import get_enc_params, name_func
from torchaudio_unittest.common_utils import (
disabledInCI,
get_wav_data,
load_wav,
nested_params,
PytorchTestCase,
save_wav,
skipIfNoExec,
skipIfNoFFmpeg,
TempDirMixin,
TorchaudioTestCase,
)
def _convert_audio_file(src_path, dst_path, muxer=None, encoder=None, sample_fmt=None):
command = ["ffmpeg", "-hide_banner", "-y", "-i", src_path, "-strict", "-2"]
if muxer:
command += ["-f", muxer]
if encoder:
command += ["-acodec", encoder]
if sample_fmt:
command += ["-sample_fmt", sample_fmt]
command += [dst_path]
print(" ".join(command), file=sys.stderr)
subprocess.run(command, check=True)
class SaveTestBase(TempDirMixin, TorchaudioTestCase):
_save = partial(get_save_func(), backend="ffmpeg")
def assert_save_consistency(
self,
format: str,
*,
compression: Optional[CodecConfig] = None,
encoding: str = None,
bits_per_sample: int = None,
sample_rate: float = 8000,
num_channels: int = 2,
num_frames: float = 3 * 8000,
src_dtype: str = "int32",
test_mode: str = "path",
):
"""`save` function produces file that is comparable with `ffmpeg` command
To compare that the file produced by `save` function agains the file produced by
the equivalent `ffmpeg` command, we need to load both files.
But there are many formats that cannot be opened with common Python modules (like
SciPy).
So we use `ffmpeg` command to prepare the original data and convert the saved files
into a format that SciPy can read (PCM wav).
The following diagram illustrates this process. The difference is 2.1. and 3.1.
This assumes that
- loading data with SciPy preserves the data well.
- converting the resulting files into WAV format with `ffmpeg` preserve the data well.
x
| 1. Generate source wav file with SciPy
|
v
-------------- wav ----------------
| |
| 2.1. load with scipy | 3.1. Convert to the target
| then save it into the target | format depth with ffmpeg
| format with torchaudio |
v v
target format target format
| |
| 2.2. Convert to wav with ffmpeg | 3.2. Convert to wav with ffmpeg
| |
v v
wav wav
| |
| 2.3. load with scipy | 3.3. load with scipy
| |
v v
tensor -------> compare <--------- tensor
"""
src_path = self.get_temp_path("1.source.wav")
tgt_path = self.get_temp_path(f"2.1.torchaudio.{format}")
tst_path = self.get_temp_path("2.2.result.wav")
sox_path = self.get_temp_path(f"3.1.ffmpeg.{format}")
ref_path = self.get_temp_path("3.2.ref.wav")
# 1. Generate original wav
data = get_wav_data(src_dtype, num_channels, normalize=False, num_frames=num_frames)
save_wav(src_path, data, sample_rate)
# 2.1. Convert the original wav to target format with torchaudio
data = load_wav(src_path, normalize=False)[0]
if test_mode == "path":
ext = format
self._save(
tgt_path,
data,
sample_rate,
compression=compression,
format=format,
encoding=encoding,
bits_per_sample=bits_per_sample,
)
elif test_mode == "fileobj":
ext = None
with open(tgt_path, "bw") as file_:
self._save(
file_,
data,
sample_rate,
compression=compression,
format=format,
encoding=encoding,
bits_per_sample=bits_per_sample,
)
elif test_mode == "bytesio":
file_ = io.BytesIO()
ext = None
self._save(
file_,
data,
sample_rate,
compression=compression,
format=format,
encoding=encoding,
bits_per_sample=bits_per_sample,
)
file_.seek(0)
with open(tgt_path, "bw") as f:
f.write(file_.read())
else:
raise ValueError(f"Unexpected test mode: {test_mode}")
# 2.2. Convert the target format to wav with ffmpeg
_convert_audio_file(tgt_path, tst_path, encoder="pcm_f32le")
# 2.3. Load with SciPy
found = load_wav(tst_path, normalize=False)[0]
# 3.1. Convert the original wav to target format with ffmpeg
muxer, encoder, sample_fmt = _parse_save_args(ext, format, encoding, bits_per_sample)
_convert_audio_file(src_path, sox_path, muxer=muxer, encoder=encoder, sample_fmt=sample_fmt)
# 3.2. Convert the target format to wav with ffmpeg
_convert_audio_file(sox_path, ref_path, encoder="pcm_f32le")
# 3.3. Load with SciPy
expected = load_wav(ref_path, normalize=False)[0]
self.assertEqual(found, expected)
@disabledInCI
@skipIfNoExec("sox")
@skipIfNoExec("ffmpeg")
@skipIfNoFFmpeg
class SaveTest(SaveTestBase):
def test_pathlike(self):
"""FFmpeg dispatcher can save audio data to pathlike object"""
sample_rate = 16000
dtype = "float32"
num_channels = 2
duration = 1
path = self.get_temp_path("data.wav")
data = get_wav_data(dtype, num_channels, normalize=False, num_frames=duration * sample_rate)
self._save(pathlib.Path(path), data, sample_rate)
@nested_params(
["path", "fileobj", "bytesio"],
[
("PCM_U", 8),
("PCM_S", 16),
("PCM_S", 32),
("PCM_F", 32),
("PCM_F", 64),
("ULAW", 8),
("ALAW", 8),
],
)
def test_save_wav(self, test_mode, enc_params):
encoding, bits_per_sample = enc_params
self.assert_save_consistency("wav", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode)
@nested_params(
["path", "fileobj", "bytesio"],
[
("float32",),
("int32",),
("int16",),
("uint8",),
],
)
def test_save_wav_dtype(self, test_mode, params):
(dtype,) = params
self.assert_save_consistency("wav", src_dtype=dtype, test_mode=test_mode)
@nested_params(
["path", "fileobj", "bytesio"],
# NOTE: Supported sample formats: s16 s32 (24 bits)
# [8, 16, 24],
[16, 24],
[
0,
1,
2,
3,
4,
5,
6,
7,
8,
],
)
def test_save_flac(self, test_mode, bits_per_sample, compression_level):
# -acodec flac -sample_fmt s16
# 24 bits needs to be mapped to s32
codec_config = CodecConfig(
compression_level=compression_level,
)
self.assert_save_consistency(
"flac", compression=codec_config, bits_per_sample=bits_per_sample, test_mode=test_mode
)
# @nested_params(
# ["path", "fileobj", "bytesio"],
# )
# # NOTE: FFmpeg: Unable to find a suitable output format
# def test_save_htk(self, test_mode):
# self.assert_save_consistency("htk", test_mode=test_mode, num_channels=1)
@nested_params(
[
None,
-1,
0,
1,
2,
3,
5,
10,
],
["path", "fileobj", "bytesio"],
)
def test_save_vorbis(self, quality_level, test_mode):
# NOTE: ffmpeg doesn't recognize extension "vorbis", so we use "ogg"
# self.assert_save_consistency("vorbis", test_mode=test_mode)
codec_config = CodecConfig(
qscale=quality_level,
)
self.assert_save_consistency("ogg", compression=codec_config, test_mode=test_mode)
# @nested_params(
# ["path", "fileobj", "bytesio"],
# [
# (
# "PCM_S",
# 8,
# ),
# (
# "PCM_S",
# 16,
# ),
# (
# "PCM_S",
# 24,
# ),
# (
# "PCM_S",
# 32,
# ),
# ("ULAW", 8),
# ("ALAW", 8),
# ("ALAW", 16),
# ("ALAW", 24),
# ("ALAW", 32),
# ],
# )
# NOTE: FFmpeg doesn't support encoding sphere files.
# def test_save_sphere(self, test_mode, enc_params):
# encoding, bits_per_sample = enc_params
# self.assert_save_consistency("sph", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode)
# @nested_params(
# ["path", "fileobj", "bytesio"],
# [
# (
# "PCM_U",
# 8,
# ),
# (
# "PCM_S",
# 16,
# ),
# (
# "PCM_S",
# 24,
# ),
# (
# "PCM_S",
# 32,
# ),
# (
# "PCM_F",
# 32,
# ),
# (
# "PCM_F",
# 64,
# ),
# (
# "ULAW",
# 8,
# ),
# (
# "ALAW",
# 8,
# ),
# ],
# )
# NOTE: FFmpeg doesn't support amb.
# def test_save_amb(self, test_mode, enc_params):
# encoding, bits_per_sample = enc_params
# self.assert_save_consistency("amb", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode)
# @nested_params(
# ["path", "fileobj", "bytesio"],
# )
# # NOTE: FFmpeg: Unable to find a suitable output format
# def test_save_amr_nb(self, test_mode):
# self.assert_save_consistency("amr-nb", num_channels=1, test_mode=test_mode)
# @nested_params(
# ["path", "fileobj", "bytesio"],
# )
# # NOTE: FFmpeg: RuntimeError: Unexpected codec: gsm
# def test_save_gsm(self, test_mode):
# self.assert_save_consistency("gsm", num_channels=1, test_mode=test_mode)
# with self.assertRaises(RuntimeError, msg="gsm format only supports single channel audio."):
# self.assert_save_consistency("gsm", num_channels=2, test_mode=test_mode)
# with self.assertRaises(RuntimeError, msg="gsm format only supports a sampling rate of 8kHz."):
# self.assert_save_consistency("gsm", sample_rate=16000, test_mode=test_mode)
@parameterized.expand(
[
("wav", "PCM_S", 16),
("flac",),
("ogg",),
# ("sph", "PCM_S", 16),
# ("amr-nb",),
# ("amb", "PCM_S", 16),
],
name_func=name_func,
)
def test_save_large(self, format, encoding=None, bits_per_sample=None):
"""`self._save` can save large files."""
sample_rate = 8000
one_hour = 60 * 60 * sample_rate
self.assert_save_consistency(
format,
# NOTE: for ogg, ffmpeg only supports >= 2 channels
num_channels=2,
sample_rate=8000,
num_frames=one_hour,
encoding=encoding,
bits_per_sample=bits_per_sample,
)
@parameterized.expand(
[
(16,),
# NOTE: FFmpeg doesn't support more than 16 channels.
# (32,),
# (64,),
# (128,),
# (256,),
],
name_func=name_func,
)
def test_save_multi_channels(self, num_channels):
"""`self._save` can save audio with many channels"""
self.assert_save_consistency("wav", encoding="PCM_S", bits_per_sample=16, num_channels=num_channels)
@skipIfNoExec("sox")
@skipIfNoFFmpeg
class TestSaveParams(TempDirMixin, PytorchTestCase):
"""Test the correctness of optional parameters of `self._save`"""
_save = partial(get_save_func(), backend="ffmpeg")
@parameterized.expand([(True,), (False,)], name_func=name_func)
def test_save_channels_first(self, channels_first):
"""channels_first swaps axes"""
path = self.get_temp_path("data.wav")
data = get_wav_data("int16", 2, channels_first=channels_first, normalize=False)
self._save(path, data, 8000, channels_first=channels_first)
found = load_wav(path, normalize=False)[0]
expected = data if channels_first else data.transpose(1, 0)
self.assertEqual(found, expected)
@parameterized.expand(["float32", "int32", "int16", "uint8"], name_func=name_func)
def test_save_noncontiguous(self, dtype):
"""Noncontiguous tensors are saved correctly"""
path = self.get_temp_path("data.wav")
enc, bps = get_enc_params(dtype)
expected = get_wav_data(dtype, 4, normalize=False)[::2, ::2]
assert not expected.is_contiguous()
self._save(path, expected, 8000, encoding=enc, bits_per_sample=bps)
found = load_wav(path, normalize=False)[0]
self.assertEqual(found, expected)
@parameterized.expand(
[
"float32",
"int32",
"int16",
"uint8",
]
)
def test_save_tensor_preserve(self, dtype):
"""save function should not alter Tensor"""
path = self.get_temp_path("data.wav")
expected = get_wav_data(dtype, 4, normalize=False)[::2, ::2]
data = expected.clone()
self._save(path, data, 8000)
self.assertEqual(data, expected)
@disabledInCI
@skipIfNoExec("sox")
@skipIfNoFFmpeg
class TestSaveNonExistingDirectory(PytorchTestCase):
_save = partial(get_save_func(), backend="ffmpeg")
def test_save_fail(self):
"""
When attempted to save into a non-existing dir, error message must contain the file path.
"""
path = os.path.join("non_existing_directory", "foo.wav")
with self.assertRaisesRegex(RuntimeError, path):
self._save(path, torch.zeros(1, 1), 8000)
|