1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
import os
import tarfile
from functools import partial
from unittest.mock import patch
import torch
from parameterized import parameterized
from torchaudio._backend.utils import get_load_func
from torchaudio._internal import module_utils as _mod_utils
from torchaudio_unittest.common_utils import (
get_wav_data,
load_wav,
normalize_wav,
PytorchTestCase,
save_wav,
skipIfNoModule,
TempDirMixin,
)
from .common import dtype2subtype, parameterize, skipIfFormatNotSupported
if _mod_utils.is_module_available("soundfile"):
import soundfile
def _get_mock_path(
ext: str,
dtype: str,
sample_rate: int,
num_channels: int,
num_frames: int,
):
return f"{dtype}_{sample_rate}_{num_channels}_{num_frames}.{ext}"
def _get_mock_params(path: str):
filename, ext = path.split(".")
parts = filename.split("_")
return {
"ext": ext,
"dtype": parts[0],
"sample_rate": int(parts[1]),
"num_channels": int(parts[2]),
"num_frames": int(parts[3]),
}
class SoundFileMock:
def __init__(self, path, mode):
assert mode == "r"
self.path = path
self._params = _get_mock_params(path)
self._start = None
@property
def samplerate(self):
return self._params["sample_rate"]
@property
def format(self):
if self._params["ext"] == "wav":
return "WAV"
if self._params["ext"] == "flac":
return "FLAC"
if self._params["ext"] == "ogg":
return "OGG"
if self._params["ext"] in ["sph", "nis", "nist"]:
return "NIST"
@property
def subtype(self):
if self._params["ext"] == "ogg":
return "VORBIS"
return dtype2subtype(self._params["dtype"])
def _prepare_read(self, start, stop, frames):
assert stop is None
self._start = start
return frames
def read(self, frames, dtype, always_2d):
assert always_2d
data = get_wav_data(
dtype,
self._params["num_channels"],
normalize=False,
num_frames=self._params["num_frames"],
channels_first=False,
).numpy()
return data[self._start : self._start + frames]
def __enter__(self):
return self
def __exit__(self, *args, **kwargs):
pass
class MockedLoadTest(PytorchTestCase):
_load = partial(get_load_func(), backend="soundfile")
def assert_dtype(self, ext, dtype, sample_rate, num_channels, normalize, channels_first):
"""When format is WAV or NIST, normalize=False will return the native dtype Tensor, otherwise float32"""
num_frames = 3 * sample_rate
path = _get_mock_path(ext, dtype, sample_rate, num_channels, num_frames)
expected_dtype = torch.float32 if normalize or ext not in ["wav", "nist"] else getattr(torch, dtype)
with patch("soundfile.SoundFile", SoundFileMock):
found, sr = self._load(path, normalize=normalize, channels_first=channels_first)
assert found.dtype == expected_dtype
assert sample_rate == sr
@parameterize(
["uint8", "int16", "int32", "float32", "float64"],
[8000, 16000],
[1, 2],
[True, False],
[True, False],
)
def test_wav(self, dtype, sample_rate, num_channels, normalize, channels_first):
"""Returns native dtype when normalize=False else float32"""
self.assert_dtype("wav", dtype, sample_rate, num_channels, normalize, channels_first)
@parameterize(
["int8", "int16", "int32"],
[8000, 16000],
[1, 2],
[True, False],
[True, False],
)
def test_sphere(self, dtype, sample_rate, num_channels, normalize, channels_first):
"""Returns float32 always"""
self.assert_dtype("sph", dtype, sample_rate, num_channels, normalize, channels_first)
@parameterize([8000, 16000], [1, 2], [True, False], [True, False])
def test_ogg(self, sample_rate, num_channels, normalize, channels_first):
"""Returns float32 always"""
self.assert_dtype("ogg", "int16", sample_rate, num_channels, normalize, channels_first)
@parameterize([8000, 16000], [1, 2], [True, False], [True, False])
def test_flac(self, sample_rate, num_channels, normalize, channels_first):
"""`soundfile_backend.load` can load ogg format."""
self.assert_dtype("flac", "int16", sample_rate, num_channels, normalize, channels_first)
class LoadTestBase(TempDirMixin, PytorchTestCase):
_load = partial(get_load_func(), backend="soundfile")
def assert_wav(
self,
dtype,
sample_rate,
num_channels,
normalize,
channels_first=True,
duration=1,
):
"""`soundfile_backend.load` can load wav format correctly.
Wav data loaded with soundfile backend should match those with scipy
"""
path = self.get_temp_path("reference.wav")
num_frames = duration * sample_rate
data = get_wav_data(
dtype,
num_channels,
normalize=normalize,
num_frames=num_frames,
channels_first=channels_first,
)
save_wav(path, data, sample_rate, channels_first=channels_first)
expected = load_wav(path, normalize=normalize, channels_first=channels_first)[0]
data, sr = self._load(path, normalize=normalize, channels_first=channels_first)
assert sr == sample_rate
self.assertEqual(data, expected)
def assert_sphere(
self,
dtype,
sample_rate,
num_channels,
channels_first=True,
duration=1,
):
"""`soundfile_backend.load` can load SPHERE format correctly."""
path = self.get_temp_path("reference.sph")
num_frames = duration * sample_rate
raw = get_wav_data(
dtype,
num_channels,
num_frames=num_frames,
normalize=False,
channels_first=False,
)
soundfile.write(path, raw, sample_rate, subtype=dtype2subtype(dtype), format="NIST")
expected = normalize_wav(raw.t() if channels_first else raw)
data, sr = self._load(path, channels_first=channels_first)
assert sr == sample_rate
self.assertEqual(data, expected, atol=1e-4, rtol=1e-8)
def assert_flac(
self,
dtype,
sample_rate,
num_channels,
channels_first=True,
duration=1,
):
"""`soundfile_backend.load` can load FLAC format correctly."""
path = self.get_temp_path("reference.flac")
num_frames = duration * sample_rate
raw = get_wav_data(
dtype,
num_channels,
num_frames=num_frames,
normalize=False,
channels_first=False,
)
soundfile.write(path, raw, sample_rate)
expected = normalize_wav(raw.t() if channels_first else raw)
data, sr = self._load(path, channels_first=channels_first)
assert sr == sample_rate
self.assertEqual(data, expected, atol=1e-4, rtol=1e-8)
@skipIfNoModule("soundfile")
class TestLoad(LoadTestBase):
"""Test the correctness of `soundfile_backend.load` for various formats"""
@parameterize(
["float32", "int32", "int16"],
[8000, 16000],
[1, 2],
[False, True],
[False, True],
)
def test_wav(self, dtype, sample_rate, num_channels, normalize, channels_first):
"""`soundfile_backend.load` can load wav format correctly."""
self.assert_wav(dtype, sample_rate, num_channels, normalize, channels_first)
@parameterize(
["int16"],
[16000],
[2],
[False],
)
def test_wav_large(self, dtype, sample_rate, num_channels, normalize):
"""`soundfile_backend.load` can load large wav file correctly."""
two_hours = 2 * 60 * 60
self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=two_hours)
@parameterize(["float32", "int32", "int16"], [4, 8, 16, 32], [False, True])
def test_multiple_channels(self, dtype, num_channels, channels_first):
"""`soundfile_backend.load` can load wav file with more than 2 channels."""
sample_rate = 8000
normalize = False
self.assert_wav(dtype, sample_rate, num_channels, normalize, channels_first)
@parameterize(["int32", "int16"], [8000, 16000], [1, 2], [False, True])
@skipIfFormatNotSupported("NIST")
def test_sphere(self, dtype, sample_rate, num_channels, channels_first):
"""`soundfile_backend.load` can load sphere format correctly."""
self.assert_sphere(dtype, sample_rate, num_channels, channels_first)
@parameterize(["int32", "int16"], [8000, 16000], [1, 2], [False, True])
@skipIfFormatNotSupported("FLAC")
def test_flac(self, dtype, sample_rate, num_channels, channels_first):
"""`soundfile_backend.load` can load flac format correctly."""
self.assert_flac(dtype, sample_rate, num_channels, channels_first)
@skipIfNoModule("soundfile")
class TestLoadFormat(TempDirMixin, PytorchTestCase):
"""Given `format` parameter, `so.load` can load files without extension"""
_load = partial(get_load_func(), backend="soundfile")
original = None
path = None
def _make_file(self, format_):
sample_rate = 8000
path_with_ext = self.get_temp_path(f"test.{format_}")
data = get_wav_data("float32", num_channels=2).numpy().T
soundfile.write(path_with_ext, data, sample_rate)
expected = soundfile.read(path_with_ext, dtype="float32")[0].T
path = os.path.splitext(path_with_ext)[0]
os.rename(path_with_ext, path)
return path, expected
def _test_format(self, format_):
"""Providing format allows to read file without extension"""
path, expected = self._make_file(format_)
found, _ = self._load(path)
self.assertEqual(found, expected)
@parameterized.expand(
[
("WAV",),
("wav",),
]
)
def test_wav(self, format_):
self._test_format(format_)
@parameterized.expand(
[
("FLAC",),
("flac",),
]
)
@skipIfFormatNotSupported("FLAC")
def test_flac(self, format_):
self._test_format(format_)
@skipIfNoModule("soundfile")
class TestFileObject(TempDirMixin, PytorchTestCase):
_load = partial(get_load_func(), backend="soundfile")
def _test_fileobj(self, ext):
"""Loading audio via file-like object works"""
sample_rate = 16000
path = self.get_temp_path(f"test.{ext}")
data = get_wav_data("float32", num_channels=2).numpy().T
soundfile.write(path, data, sample_rate)
expected = soundfile.read(path, dtype="float32")[0].T
with open(path, "rb") as fileobj:
found, sr = self._load(fileobj)
assert sr == sample_rate
self.assertEqual(expected, found)
def test_fileobj_wav(self):
"""Loading audio via file-like object works"""
self._test_fileobj("wav")
@skipIfFormatNotSupported("FLAC")
def test_fileobj_flac(self):
"""Loading audio via file-like object works"""
self._test_fileobj("flac")
def _test_tarfile(self, ext):
"""Loading audio via file-like object works"""
sample_rate = 16000
audio_file = f"test.{ext}"
audio_path = self.get_temp_path(audio_file)
archive_path = self.get_temp_path("archive.tar.gz")
data = get_wav_data("float32", num_channels=2).numpy().T
soundfile.write(audio_path, data, sample_rate)
expected = soundfile.read(audio_path, dtype="float32")[0].T
with tarfile.TarFile(archive_path, "w") as tarobj:
tarobj.add(audio_path, arcname=audio_file)
with tarfile.TarFile(archive_path, "r") as tarobj:
fileobj = tarobj.extractfile(audio_file)
found, sr = self._load(fileobj)
assert sr == sample_rate
self.assertEqual(expected, found)
def test_tarfile_wav(self):
"""Loading audio via file-like object works"""
self._test_tarfile("wav")
@skipIfFormatNotSupported("FLAC")
def test_tarfile_flac(self):
"""Loading audio via file-like object works"""
self._test_tarfile("flac")
|