File: load_test.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (342 lines) | stat: -rw-r--r-- 11,561 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import itertools

import torch
from parameterized import parameterized
from torchaudio.backend import sox_io_backend
from torchaudio_unittest.common_utils import (
    get_asset_path,
    get_wav_data,
    load_wav,
    nested_params,
    PytorchTestCase,
    save_wav,
    skipIfNoExec,
    skipIfNoSox,
    skipIfNoSoxDecoder,
    sox_utils,
    TempDirMixin,
)

from .common import name_func


class LoadTestBase(TempDirMixin, PytorchTestCase):
    def assert_format(
        self,
        format: str,
        sample_rate: float,
        num_channels: int,
        compression: float = None,
        bit_depth: int = None,
        duration: float = 1,
        normalize: bool = True,
        encoding: str = None,
        atol: float = 4e-05,
        rtol: float = 1.3e-06,
    ):
        """`sox_io_backend.load` can load given format correctly.

        file encodings introduce delay and boundary effects so
        we create a reference wav file from the original file format

         x
         |
         |    1. Generate given format with Sox
         |
         v    2. Convert to wav with Sox
        given format ----------------------> wav
         |                                   |
         |    3. Load with torchaudio        | 4. Load with scipy
         |                                   |
         v                                   v
        tensor ----------> x <----------- tensor
                       5. Compare

        Underlying assumptions are;
        i. Conversion of given format to wav with Sox preserves data.
        ii. Loading wav file with scipy is correct.

        By combining i & ii, step 2. and 4. allows to load reference given format
        data without using torchaudio
        """

        path = self.get_temp_path(f"1.original.{format}")
        ref_path = self.get_temp_path("2.reference.wav")

        # 1. Generate the given format with sox
        sox_utils.gen_audio_file(
            path,
            sample_rate,
            num_channels,
            encoding=encoding,
            compression=compression,
            bit_depth=bit_depth,
            duration=duration,
        )
        # 2. Convert to wav with sox
        wav_bit_depth = 32 if bit_depth == 24 else None  # for 24-bit wav
        sox_utils.convert_audio_file(path, ref_path, bit_depth=wav_bit_depth)
        # 3. Load the given format with torchaudio
        data, sr = sox_io_backend.load(path, normalize=normalize)
        # 4. Load wav with scipy
        data_ref = load_wav(ref_path, normalize=normalize)[0]
        # 5. Compare
        assert sr == sample_rate
        self.assertEqual(data, data_ref, atol=atol, rtol=rtol)

    def assert_wav(self, dtype, sample_rate, num_channels, normalize, duration):
        """`sox_io_backend.load` can load wav format correctly.

        Wav data loaded with sox_io backend should match those with scipy
        """
        path = self.get_temp_path("reference.wav")
        data = get_wav_data(dtype, num_channels, normalize=normalize, num_frames=duration * sample_rate)
        save_wav(path, data, sample_rate)
        expected = load_wav(path, normalize=normalize)[0]
        data, sr = sox_io_backend.load(path, normalize=normalize)
        assert sr == sample_rate
        self.assertEqual(data, expected)


@skipIfNoExec("sox")
@skipIfNoSox
class TestLoad(LoadTestBase):
    """Test the correctness of `sox_io_backend.load` for various formats"""

    @parameterized.expand(
        list(
            itertools.product(
                ["float32", "int32", "int16", "uint8"],
                [8000, 16000],
                [1, 2],
                [False, True],
            )
        ),
        name_func=name_func,
    )
    def test_wav(self, dtype, sample_rate, num_channels, normalize):
        """`sox_io_backend.load` can load wav format correctly."""
        self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=1)

    @parameterized.expand(
        list(
            itertools.product(
                [8000, 16000],
                [1, 2],
                [False, True],
            )
        ),
        name_func=name_func,
    )
    def test_24bit_wav(self, sample_rate, num_channels, normalize):
        """`sox_io_backend.load` can load 24bit wav format correctly. Corectly casts it to ``int32`` tensor dtype."""
        self.assert_format("wav", sample_rate, num_channels, bit_depth=24, normalize=normalize, duration=1)

    @parameterized.expand(
        list(
            itertools.product(
                ["int16"],
                [16000],
                [2],
                [False],
            )
        ),
        name_func=name_func,
    )
    def test_wav_large(self, dtype, sample_rate, num_channels, normalize):
        """`sox_io_backend.load` can load large wav file correctly."""
        two_hours = 2 * 60 * 60
        self.assert_wav(dtype, sample_rate, num_channels, normalize, two_hours)

    @parameterized.expand(
        list(
            itertools.product(
                ["float32", "int32", "int16", "uint8"],
                [4, 8, 16, 32],
            )
        ),
        name_func=name_func,
    )
    def test_multiple_channels(self, dtype, num_channels):
        """`sox_io_backend.load` can load wav file with more than 2 channels."""
        sample_rate = 8000
        normalize = False
        self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=1)

    @parameterized.expand(
        list(
            itertools.product(
                [8000, 16000],
                [1, 2],
                list(range(9)),
            )
        ),
        name_func=name_func,
    )
    def test_flac(self, sample_rate, num_channels, compression_level):
        """`sox_io_backend.load` can load flac format correctly."""
        self.assert_format("flac", sample_rate, num_channels, compression=compression_level, bit_depth=16, duration=1)

    @parameterized.expand(
        list(
            itertools.product(
                [16000],
                [2],
                [0],
            )
        ),
        name_func=name_func,
    )
    def test_flac_large(self, sample_rate, num_channels, compression_level):
        """`sox_io_backend.load` can load large flac file correctly."""
        two_hours = 2 * 60 * 60
        self.assert_format(
            "flac", sample_rate, num_channels, compression=compression_level, bit_depth=16, duration=two_hours
        )

    @parameterized.expand(
        list(
            itertools.product(
                [8000, 16000],
                [1, 2],
                [-1, 0, 1, 2, 3, 3.6, 5, 10],
            )
        ),
        name_func=name_func,
    )
    def test_vorbis(self, sample_rate, num_channels, quality_level):
        """`sox_io_backend.load` can load vorbis format correctly."""
        self.assert_format("vorbis", sample_rate, num_channels, compression=quality_level, bit_depth=16, duration=1)

    @parameterized.expand(
        list(
            itertools.product(
                [16000],
                [2],
                [10],
            )
        ),
        name_func=name_func,
    )
    def test_vorbis_large(self, sample_rate, num_channels, quality_level):
        """`sox_io_backend.load` can load large vorbis file correctly."""
        two_hours = 2 * 60 * 60
        self.assert_format(
            "vorbis", sample_rate, num_channels, compression=quality_level, bit_depth=16, duration=two_hours
        )

    @parameterized.expand(
        list(
            itertools.product(
                ["96k"],
                [1, 2],
                [0, 5, 10],
            )
        ),
        name_func=name_func,
    )
    @skipIfNoSoxDecoder("opus")
    def test_opus(self, bitrate, num_channels, compression_level):
        """`sox_io_backend.load` can load opus file correctly."""
        ops_path = get_asset_path("io", f"{bitrate}_{compression_level}_{num_channels}ch.opus")
        wav_path = self.get_temp_path(f"{bitrate}_{compression_level}_{num_channels}ch.opus.wav")
        sox_utils.convert_audio_file(ops_path, wav_path)

        expected, sample_rate = load_wav(wav_path)
        found, sr = sox_io_backend.load(ops_path)

        assert sample_rate == sr
        self.assertEqual(expected, found)

    @parameterized.expand(
        list(
            itertools.product(
                [8000, 16000],
                [1, 2],
            )
        ),
        name_func=name_func,
    )
    def test_sphere(self, sample_rate, num_channels):
        """`sox_io_backend.load` can load sph format correctly."""
        self.assert_format("sph", sample_rate, num_channels, bit_depth=32, duration=1)

    @parameterized.expand(
        list(
            itertools.product(
                ["float32", "int32", "int16"],
                [8000, 16000],
                [1, 2],
                [False, True],
            )
        ),
        name_func=name_func,
    )
    def test_amb(self, dtype, sample_rate, num_channels, normalize):
        """`sox_io_backend.load` can load amb format correctly."""
        bit_depth = sox_utils.get_bit_depth(dtype)
        encoding = sox_utils.get_encoding(dtype)
        self.assert_format(
            "amb", sample_rate, num_channels, bit_depth=bit_depth, duration=1, encoding=encoding, normalize=normalize
        )

    @skipIfNoSoxDecoder("amr-nb")
    def test_amr_nb(self):
        """`sox_io_backend.load` can load amr_nb format correctly."""
        self.assert_format("amr-nb", sample_rate=8000, num_channels=1, bit_depth=32, duration=1)


@skipIfNoSox
class TestLoadParams(TempDirMixin, PytorchTestCase):
    """Test the correctness of frame parameters of `sox_io_backend.load`"""

    def _test(self, func, frame_offset, num_frames, channels_first, normalize):
        original = get_wav_data("int16", num_channels=2, normalize=False)
        path = self.get_temp_path("test.wav")
        save_wav(path, original, sample_rate=8000)

        output, _ = func(path, frame_offset, num_frames, normalize, channels_first, None)
        frame_end = None if num_frames == -1 else frame_offset + num_frames
        expected = original[:, slice(frame_offset, frame_end)]
        if not channels_first:
            expected = expected.T
        if normalize:
            expected = expected.to(torch.float32) / (2**15)
        self.assertEqual(output, expected)

    @nested_params(
        [0, 1, 10, 100, 1000],
        [-1, 1, 10, 100, 1000],
        [True, False],
        [True, False],
    )
    def test_sox(self, frame_offset, num_frames, channels_first, normalize):
        """The combination of properly changes the output tensor"""

        self._test(sox_io_backend.load, frame_offset, num_frames, channels_first, normalize)


@skipIfNoSox
class TestLoadWithoutExtension(PytorchTestCase):
    def test_mp3(self):
        """MP3 file without extension can be loaded

        https://github.com/pytorch/audio/issues/1040

        The file was generated with the following command
            ffmpeg -f lavfi -i "sine=frequency=1000:duration=5" -ar 16000 -f mp3 test_noext
        """
        path = get_asset_path("mp3_without_ext")
        _, sr = sox_io_backend.load(path, format="mp3")
        assert sr == 16000


@skipIfNoSox
class TestLoadNoSuchFile(PytorchTestCase):
    def test_load_fail(self):
        """
        When attempted to load a non-existing file, error message must contain the file path.
        """
        path = "non_existing_audio.wav"
        with self.assertRaisesRegex(RuntimeError, path):
            sox_io_backend.load(path)