File: fluentcommands_test.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (140 lines) | stat: -rw-r--r-- 4,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import csv
import os
import random
import string

from torchaudio.datasets import fluentcommands
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase

HEADER = ["", "path", "speakerId", "transcription", "action", "object", "location"]
SLOTS = ["action", "object", "location"]
ACTIONS = ["activate", "deactivate"]
OBJECTS = ["lights", "volume"]
LOCATIONS = ["none", "kitchen", "bedroom"]
NUM_SPEAKERS = 5
SAMPLES_PER_SPEAKER = 10
SAMPLE_RATE = 16000


def _gen_rand_str(n: int, seed: int):
    random.seed(seed)
    return "".join(random.choices(string.ascii_letters + string.digits, k=n))


def _gen_csv(dataset_dir: str, subset: str, init_seed: int):
    data = []
    data.append(HEADER)

    idx = 0
    seed = init_seed
    for _ in range(NUM_SPEAKERS):
        speaker_id = _gen_rand_str(5, seed=seed)
        speaker_dir = os.path.join(dataset_dir, "wavs", "speakers", speaker_id)
        os.makedirs(speaker_dir, exist_ok=True)

        for _ in range(SAMPLES_PER_SPEAKER):
            seed += 1
            filename = _gen_rand_str(10, seed=seed)
            path = f"wavs/speakers/{speaker_id}/{filename}.wav"

            random.seed(seed)
            transcription = ""
            act = random.choice(ACTIONS)
            obj = random.choice(OBJECTS)
            loc = random.choice(LOCATIONS)

            data.append([idx, path, speaker_id, transcription, act, obj, loc])

            idx += 1

    csv_path = os.path.join(dataset_dir, "data", f"{subset}_data.csv")
    with open(csv_path, "w", newline="") as csv_file:
        file_writer = csv.writer(csv_file)
        file_writer.writerows(data)

    return data


def _save_samples(dataset_dir: str, subset: str, seed: int):
    # generate csv file
    data = _gen_csv(dataset_dir, subset, seed)

    # iterate through csv file, save wavs to corresponding files
    header = data[0]
    data = data[1:]  # remove header
    path_idx = header.index("path")

    samples = []
    for row in data:
        wav = get_whitenoise(
            sample_rate=SAMPLE_RATE,
            duration=0.01,
            n_channels=1,
            seed=seed,
        )
        path = row[path_idx]
        filename = path.split("/")[-1]
        filename = filename.split(".")[0]
        speaker_id, transcription, act, obj, loc = row[2:]

        wav_file = os.path.join(dataset_dir, "wavs", "speakers", speaker_id, f"{filename}.wav")
        save_wav(wav_file, wav, SAMPLE_RATE)

        sample = wav, SAMPLE_RATE, filename, speaker_id, transcription, act, obj, loc
        samples.append(sample)

        seed += 1

    return samples


def get_mock_dataset(dataset_dir: str):
    data_folder = os.path.join(dataset_dir, "data")
    wav_folder = os.path.join(dataset_dir, "wavs", "speakers")

    os.makedirs(data_folder, exist_ok=True)
    os.makedirs(wav_folder, exist_ok=True)

    mocked_train_samples = _save_samples(dataset_dir, "train", 1)
    mocked_valid_samples = _save_samples(dataset_dir, "valid", 111)
    mocked_test_samples = _save_samples(dataset_dir, "test", 1111)

    return mocked_train_samples, mocked_valid_samples, mocked_test_samples


class TestFluentSpeechCommands(TempDirMixin, TorchaudioTestCase):
    root_dir = None

    mocked_train_samples = []
    mocked_valid_samples = []
    mocked_test_samples = []

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        dataset_dir = os.path.join(cls.root_dir, "fluent_speech_commands_dataset")
        (
            cls.mocked_train_samples,
            cls.mocked_valid_samples,
            cls.mocked_test_samples,
        ) = get_mock_dataset(dataset_dir)

    def _testFluentCommands(self, dataset, samples):
        num_samples = 0
        for i, data in enumerate(dataset):
            self.assertEqual(data, samples[i])
            num_samples += 1

        assert num_samples == len(samples)

    def testFluentCommandsTrain(self):
        dataset = fluentcommands.FluentSpeechCommands(self.root_dir, subset="train")
        self._testFluentCommands(dataset, self.mocked_train_samples)

    def testFluentCommandsValid(self):
        dataset = fluentcommands.FluentSpeechCommands(self.root_dir, subset="valid")
        self._testFluentCommands(dataset, self.mocked_valid_samples)

    def testFluentCommandsTest(self):
        dataset = fluentcommands.FluentSpeechCommands(self.root_dir, subset="test")
        self._testFluentCommands(dataset, self.mocked_test_samples)