1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
import os
from collections import defaultdict
from pathlib import Path
from parameterized import parameterized
from torchaudio.datasets import quesst14
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase
def _get_filename(folder, index):
if folder == "Audio":
return f"quesst14_{index:05d}.wav"
elif folder == "dev_queries":
return f"quesst14_dev_{index:04d}.wav"
elif folder == "eval_queries":
return f"quesst14_eval_{index:04d}.wav"
return
def _get_key(folder):
folder_key_mapping = {
"Audio": "utterances",
"dev_queries": "dev",
"eval_queries": "eval",
}
return folder_key_mapping[folder]
def _save_sample(dataset_dir, folder, language, index, sample_rate, seed):
# create and save audio samples to corresponding files
path = os.path.join(dataset_dir, folder)
os.makedirs(path, exist_ok=True)
filename = _get_filename(folder, index)
file_path = os.path.join(path, filename)
data = get_whitenoise(
sample_rate=sample_rate,
duration=0.01,
n_channels=1,
seed=seed,
)
save_wav(file_path, data, sample_rate)
sample = (data, sample_rate, Path(file_path).with_suffix("").name)
# add audio files and language data to language key files
scoring_path = os.path.join(dataset_dir, "scoring")
os.makedirs(scoring_path, exist_ok=True)
wav_file = f"quesst14Database/{folder}/{filename}"
line = f"{wav_file} {language}"
key = _get_key(folder)
language_key_file = f"language_key_{key}.lst"
language_key_file = os.path.join(scoring_path, language_key_file)
with open(language_key_file, "a") as f:
f.write(line + "\n")
return sample
def _get_mocked_samples(dataset_dir, folder, sample_rate, seed):
samples_per_language = 2
samples_map = defaultdict(list)
samples_all = []
curr_idx = 0
for language in quesst14._LANGUAGES:
for _ in range(samples_per_language):
sample = _save_sample(dataset_dir, folder, language, curr_idx, sample_rate, seed)
samples_map[language].append(sample)
samples_all.append(sample)
curr_idx += 1
return samples_map, samples_all
def get_mock_dataset(dataset_dir):
"""
dataset_dir: directory to the mocked dataset
"""
os.makedirs(dataset_dir, exist_ok=True)
sample_rate = 8000
audio_seed = 0
dev_seed = 1
eval_seed = 2
mocked_utterances, mocked_utterances_all = _get_mocked_samples(dataset_dir, "Audio", sample_rate, audio_seed)
mocked_dev_samples, mocked_dev_samples_all = _get_mocked_samples(dataset_dir, "dev_queries", sample_rate, dev_seed)
mocked_eval_samples, mocked_eval_samples_all = _get_mocked_samples(
dataset_dir, "eval_queries", sample_rate, eval_seed
)
return (
mocked_utterances,
mocked_dev_samples,
mocked_eval_samples,
mocked_utterances_all,
mocked_dev_samples_all,
mocked_eval_samples_all,
)
class TestQuesst14(TempDirMixin, TorchaudioTestCase):
root_dir = None
utterances = {}
dev_samples = {}
eval_samples = {}
utterances_all = []
dev_samples_all = []
eval_samples_all = []
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
dataset_dir = os.path.join(cls.root_dir, "quesst14Database")
(
cls.utterances,
cls.dev_samples,
cls.eval_samples,
cls.utterances_all,
cls.dev_samples_all,
cls.eval_samples_all,
) = get_mock_dataset(dataset_dir)
def _testQuesst14(self, dataset, data_samples):
num_samples = 0
for i, (data, sample_rate, name) in enumerate(dataset):
self.assertEqual(data, data_samples[i][0])
assert sample_rate == data_samples[i][1]
assert name == data_samples[i][2]
num_samples += 1
assert num_samples == len(data_samples)
def testQuesst14SubsetDocs(self):
dataset = quesst14.QUESST14(self.root_dir, language=None, subset="docs")
self._testQuesst14(dataset, self.utterances_all)
def testQuesst14SubsetDev(self):
dataset = quesst14.QUESST14(self.root_dir, language=None, subset="dev")
self._testQuesst14(dataset, self.dev_samples_all)
def testQuesst14SubsetEval(self):
dataset = quesst14.QUESST14(self.root_dir, language=None, subset="eval")
self._testQuesst14(dataset, self.eval_samples_all)
@parameterized.expand(quesst14._LANGUAGES)
def testQuesst14DocsSingleLanguage(self, language):
dataset = quesst14.QUESST14(self.root_dir, language=language, subset="docs")
self._testQuesst14(dataset, self.utterances[language])
@parameterized.expand(quesst14._LANGUAGES)
def testQuesst14DevSingleLanguage(self, language):
dataset = quesst14.QUESST14(self.root_dir, language=language, subset="dev")
self._testQuesst14(dataset, self.dev_samples[language])
@parameterized.expand(quesst14._LANGUAGES)
def testQuesst14EvalSingleLanguage(self, language):
dataset = quesst14.QUESST14(self.root_dir, language=language, subset="eval")
self._testQuesst14(dataset, self.eval_samples[language])
|