1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
import os
from pathlib import Path
from torchaudio.datasets import speechcommands
from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase
_LABELS = [
"bed",
"bird",
"cat",
"dog",
"down",
"eight",
"five",
"follow",
"forward",
"four",
"go",
"happy",
"house",
"learn",
"left",
"marvin",
"nine",
"no",
"off",
"on",
"one",
"right",
"seven",
"sheila",
"six",
"stop",
"three",
"tree",
"two",
"up",
"visual",
"wow",
"yes",
"zero",
]
def get_mock_dataset(dataset_dir):
"""
dataset_dir: directory to the mocked dataset
"""
mocked_samples = []
mocked_train_samples = []
mocked_valid_samples = []
mocked_test_samples = []
os.makedirs(dataset_dir, exist_ok=True)
sample_rate = 16000 # 16kHz sample rate
seed = 0
valid_file = os.path.join(dataset_dir, "validation_list.txt")
test_file = os.path.join(dataset_dir, "testing_list.txt")
with open(valid_file, "w") as valid, open(test_file, "w") as test:
for label in _LABELS:
path = os.path.join(dataset_dir, label)
os.makedirs(path, exist_ok=True)
for j in range(6):
# generate hash ID for speaker
speaker = "{:08x}".format(j)
for utterance in range(3):
filename = f"{speaker}{speechcommands.HASH_DIVIDER}{utterance}.wav"
file_path = os.path.join(path, filename)
seed += 1
data = get_whitenoise(
sample_rate=sample_rate,
duration=0.01,
n_channels=1,
dtype="int16",
seed=seed,
)
save_wav(file_path, data, sample_rate)
sample = (
normalize_wav(data),
sample_rate,
label,
speaker,
utterance,
)
mocked_samples.append(sample)
if j < 2:
mocked_train_samples.append(sample)
elif j < 4:
valid.write(f"{label}/{filename}\n")
mocked_valid_samples.append(sample)
elif j < 6:
test.write(f"{label}/{filename}\n")
mocked_test_samples.append(sample)
return mocked_samples, mocked_train_samples, mocked_valid_samples, mocked_test_samples
class TestSpeechCommands(TempDirMixin, TorchaudioTestCase):
root_dir = None
samples = []
train_samples = []
valid_samples = []
test_samples = []
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
dataset_dir = os.path.join(cls.root_dir, speechcommands.FOLDER_IN_ARCHIVE, speechcommands.URL)
cls.samples, cls.train_samples, cls.valid_samples, cls.test_samples = get_mock_dataset(dataset_dir)
def _testSpeechCommands(self, dataset, data_samples):
num_samples = 0
for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(dataset):
self.assertEqual(data, data_samples[i][0], atol=5e-5, rtol=1e-8)
assert sample_rate == data_samples[i][1]
assert label == data_samples[i][2]
assert speaker_id == data_samples[i][3]
assert utterance_number == data_samples[i][4]
num_samples += 1
assert num_samples == len(data_samples)
def testSpeechCommands_str(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir)
self._testSpeechCommands(dataset, self.samples)
def testSpeechCommands_path(self):
dataset = speechcommands.SPEECHCOMMANDS(Path(self.root_dir))
self._testSpeechCommands(dataset, self.samples)
def testSpeechCommandsSubsetTrain(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
self._testSpeechCommands(dataset, self.train_samples)
def testSpeechCommandsSubsetValid(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
self._testSpeechCommands(dataset, self.valid_samples)
def testSpeechCommandsSubsetTest(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")
self._testSpeechCommands(dataset, self.test_samples)
def testSpeechCommandsSum(self):
dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir)
dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == len(dataset_all)
|