File: speechcommands_test.py

package info (click to toggle)
pytorch-audio 2.6.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 10,696 kB
  • sloc: python: 61,274; cpp: 10,031; sh: 128; ansic: 70; makefile: 34
file content (149 lines) | stat: -rw-r--r-- 5,077 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
from pathlib import Path

from torchaudio.datasets import speechcommands
from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase

_LABELS = [
    "bed",
    "bird",
    "cat",
    "dog",
    "down",
    "eight",
    "five",
    "follow",
    "forward",
    "four",
    "go",
    "happy",
    "house",
    "learn",
    "left",
    "marvin",
    "nine",
    "no",
    "off",
    "on",
    "one",
    "right",
    "seven",
    "sheila",
    "six",
    "stop",
    "three",
    "tree",
    "two",
    "up",
    "visual",
    "wow",
    "yes",
    "zero",
]


def get_mock_dataset(dataset_dir):
    """
    dataset_dir: directory to the mocked dataset
    """
    mocked_samples = []
    mocked_train_samples = []
    mocked_valid_samples = []
    mocked_test_samples = []
    os.makedirs(dataset_dir, exist_ok=True)
    sample_rate = 16000  # 16kHz sample rate
    seed = 0
    valid_file = os.path.join(dataset_dir, "validation_list.txt")
    test_file = os.path.join(dataset_dir, "testing_list.txt")
    with open(valid_file, "w") as valid, open(test_file, "w") as test:
        for label in _LABELS:
            path = os.path.join(dataset_dir, label)
            os.makedirs(path, exist_ok=True)
            for j in range(6):
                # generate hash ID for speaker
                speaker = "{:08x}".format(j)

                for utterance in range(3):
                    filename = f"{speaker}{speechcommands.HASH_DIVIDER}{utterance}.wav"
                    file_path = os.path.join(path, filename)
                    seed += 1
                    data = get_whitenoise(
                        sample_rate=sample_rate,
                        duration=0.01,
                        n_channels=1,
                        dtype="int16",
                        seed=seed,
                    )
                    save_wav(file_path, data, sample_rate)
                    sample = (
                        normalize_wav(data),
                        sample_rate,
                        label,
                        speaker,
                        utterance,
                    )
                    mocked_samples.append(sample)
                    if j < 2:
                        mocked_train_samples.append(sample)
                    elif j < 4:
                        valid.write(f"{label}/{filename}\n")
                        mocked_valid_samples.append(sample)
                    elif j < 6:
                        test.write(f"{label}/{filename}\n")
                        mocked_test_samples.append(sample)
    return mocked_samples, mocked_train_samples, mocked_valid_samples, mocked_test_samples


class TestSpeechCommands(TempDirMixin, TorchaudioTestCase):

    root_dir = None
    samples = []
    train_samples = []
    valid_samples = []
    test_samples = []

    @classmethod
    def setUpClass(cls):
        cls.root_dir = cls.get_base_temp_dir()
        dataset_dir = os.path.join(cls.root_dir, speechcommands.FOLDER_IN_ARCHIVE, speechcommands.URL)
        cls.samples, cls.train_samples, cls.valid_samples, cls.test_samples = get_mock_dataset(dataset_dir)

    def _testSpeechCommands(self, dataset, data_samples):
        num_samples = 0
        for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(dataset):
            self.assertEqual(data, data_samples[i][0], atol=5e-5, rtol=1e-8)
            assert sample_rate == data_samples[i][1]
            assert label == data_samples[i][2]
            assert speaker_id == data_samples[i][3]
            assert utterance_number == data_samples[i][4]
            num_samples += 1

        assert num_samples == len(data_samples)

    def testSpeechCommands_str(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir)
        self._testSpeechCommands(dataset, self.samples)

    def testSpeechCommands_path(self):
        dataset = speechcommands.SPEECHCOMMANDS(Path(self.root_dir))
        self._testSpeechCommands(dataset, self.samples)

    def testSpeechCommandsSubsetTrain(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
        self._testSpeechCommands(dataset, self.train_samples)

    def testSpeechCommandsSubsetValid(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
        self._testSpeechCommands(dataset, self.valid_samples)

    def testSpeechCommandsSubsetTest(self):
        dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")
        self._testSpeechCommands(dataset, self.test_samples)

    def testSpeechCommandsSum(self):
        dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir)
        dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
        dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
        dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")

        assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == len(dataset_all)