1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
import os
from torchaudio.datasets import voxceleb1
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase
_NUM_SPEAKERS = 3
_NUM_YOUTUBE = 5
def _save_sample(dataset_dir: str, sample_rate: int, speaker_id: int, youtube_id: int, utterance_id: int, seed: int):
"""Create and save audio samples to corresponding files
Args:
dataset_dir (str): The directory of the dataset.
sample_rate (int): Sample rate of waveform.
speaker_id (int): The index of speaker sub directory.
youtube_id (int): The index of youtube sub directory.
utterance_id (int): The utterance index.
seed (int): The seed to generate the waveform.
Returns:
Tuple[torch.Tensor, int, int, str, str]
The waveform Tensor, sample rate, speaker label, file_name, and the file path.
"""
# add random string before youtube_id
youtube_id = "Zxhsj" + str(youtube_id)
path = os.path.join(dataset_dir, "id10" + str(speaker_id), youtube_id)
os.makedirs(path, exist_ok=True)
filename = str(utterance_id) + ".wav"
file_path = os.path.join(path, filename)
waveform = get_whitenoise(
sample_rate=sample_rate,
duration=0.01,
n_channels=1,
seed=seed,
)
save_wav(file_path, waveform, sample_rate)
file_name = "-".join(["id10" + str(speaker_id), youtube_id, str(utterance_id)])
file_path = "/".join(["id10" + str(speaker_id), youtube_id, str(utterance_id) + ".wav"])
return waveform, sample_rate, speaker_id, file_name, file_path
def get_mock_iden_dataset(root_dir: str, meta_file: str):
"""Get the mocked dataset for VoxCeleb1Identification dataset.
Args:
root_dir (str): Directory to the mocked dataset
meta_file (str): The file name which stores the file list.
Returns:
Tuple[List, List, List]:
The mocked samples for train, dev, and test subsets.
"""
os.makedirs(root_dir, exist_ok=True)
wav_dir = os.path.join(root_dir, "wav")
os.makedirs(wav_dir, exist_ok=True)
mocked_train_samples, mocked_dev_samples, mocked_test_samples = [], [], []
sample_rate = 16000
seed = 0
idx = 1
with open(os.path.join(root_dir, meta_file), "w") as f:
for speaker_id in range(_NUM_SPEAKERS):
for youtube_id in range(_NUM_YOUTUBE):
waveform, sample_rate, speaker_id, file_name, file_path = _save_sample(
wav_dir, sample_rate, speaker_id, youtube_id, idx, seed
)
sample = (waveform, sample_rate, speaker_id, file_name)
if idx % 1 == 0:
mocked_train_samples.append(sample)
f.write(f"1 {file_path}\n")
elif idx % 2 == 0:
mocked_dev_samples.append(sample)
f.write(f"2 {file_path}\n")
else:
mocked_test_samples.append(sample)
f.write(f"3 {file_path}\n")
idx += 1
return (
mocked_train_samples,
mocked_dev_samples,
mocked_test_samples,
)
def get_mock_veri_dataset(root_dir: str, meta_file: str):
"""Get the mocked dataset for VoxCeleb1Verification dataset.
Args:
root_dir (str): Directory to the mocked dataset
meta_file (str): The file name which stores the file list.
Returns:
List[Sample]:
The mocked samples.
"""
os.makedirs(root_dir, exist_ok=True)
wav_dir = os.path.join(root_dir, "wav")
os.makedirs(wav_dir, exist_ok=True)
mocked_samples = []
sample_rate = 16000
seed = 0
idx = 1
with open(os.path.join(root_dir, meta_file), "w") as f:
for speaker_id1 in range(_NUM_SPEAKERS):
for speaker_id2 in range(_NUM_SPEAKERS):
for youtube_id in range(_NUM_YOUTUBE):
waveform_spk1, sample_rate, _, file_name_spk1, file_path_spk1 = _save_sample(
wav_dir, sample_rate, speaker_id1, youtube_id, idx, seed
)
waveform_spk2, sample_rate, _, file_name_spk2, file_path_spk2 = _save_sample(
wav_dir, sample_rate, speaker_id1, youtube_id, idx + 1, seed
)
if speaker_id1 == speaker_id2:
label = 1
else:
label = 0
sample = (waveform_spk1, waveform_spk2, sample_rate, label, file_name_spk1, file_name_spk2)
mocked_samples.append(sample)
f.write(f"{label} {file_path_spk1} {file_path_spk2}\n")
idx += 2
return mocked_samples
class TestVoxCeleb1Identification(TempDirMixin, TorchaudioTestCase):
root_dir = None
meta_file = "iden_list.txt"
train_samples = {}
dev_samples = {}
test_samples = {}
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
(cls.train_samples, cls.dev_samples, cls.test_samples) = get_mock_iden_dataset(cls.root_dir, cls.meta_file)
def _testVoxCeleb1Identification(self, dataset, data_samples):
num_samples = 0
for i, (waveform, sample_rate, speaker_id, file_id) in enumerate(dataset):
self.assertEqual(waveform, data_samples[i][0])
assert sample_rate == data_samples[i][1]
assert speaker_id == data_samples[i][2]
assert file_id == data_samples[i][3]
num_samples += 1
assert num_samples == len(data_samples)
def testVoxCeleb1SubsetTrain(self):
dataset = voxceleb1.VoxCeleb1Identification(self.root_dir, subset="train", meta_url=self.meta_file)
self._testVoxCeleb1Identification(dataset, self.train_samples)
def testVoxCeleb1SubsetDev(self):
dataset = voxceleb1.VoxCeleb1Identification(self.root_dir, subset="dev", meta_url=self.meta_file)
self._testVoxCeleb1Identification(dataset, self.dev_samples)
def testVoxCeleb1SubsetTest(self):
dataset = voxceleb1.VoxCeleb1Identification(self.root_dir, subset="test", meta_url=self.meta_file)
self._testVoxCeleb1Identification(dataset, self.test_samples)
class TestVoxCeleb1Verification(TempDirMixin, TorchaudioTestCase):
root_dir = None
meta_file = "veri_test.txt"
train_samples = {}
dev_samples = {}
test_samples = {}
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
(cls.samples) = get_mock_veri_dataset(cls.root_dir, cls.meta_file)
def testVoxCeleb1Verification(self):
dataset = voxceleb1.VoxCeleb1Verification(self.root_dir, meta_url=self.meta_file)
num_samples = 0
for i, (waveform_spk1, waveform_spk2, sample_rate, label, file_id_spk1, file_id_spk2) in enumerate(dataset):
self.assertEqual(waveform_spk1, self.samples[i][0])
self.assertEqual(waveform_spk2, self.samples[i][1])
assert sample_rate == self.samples[i][2]
assert label == self.samples[i][3]
assert file_id_spk1 == self.samples[i][4]
assert file_id_spk2 == self.samples[i][5]
num_samples += 1
assert num_samples == len(self.samples)
|