1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
from functools import partial
from typing import Callable, Tuple
import torch
import torchaudio.functional as F
from parameterized import parameterized
from torch import Tensor
from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import (
get_spectrogram,
get_whitenoise,
nested_params,
rnnt_utils,
TestBaseMixin,
use_deterministic_algorithms,
)
class Autograd(TestBaseMixin):
def assert_grad(
self,
transform: Callable[..., Tensor],
inputs: Tuple[torch.Tensor],
*,
enable_all_grad: bool = True,
):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=self.complex_dtype if i.is_complex() else self.dtype, device=self.device)
if enable_all_grad:
i.requires_grad = True
inputs_.append(i)
assert gradcheck(transform, inputs_)
assert gradgradcheck(transform, inputs_)
def test_lfilter_x(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
x.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)
def test_lfilter_a(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
a.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)
def test_lfilter_b(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
b.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)
def test_lfilter_all_inputs(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.lfilter, (x, a, b))
def test_lfilter_filterbanks(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=3)
a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]])
b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]])
self.assert_grad(partial(F.lfilter, batching=False), (x, a, b))
def test_lfilter_batching(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]])
b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]])
self.assert_grad(F.lfilter, (x, a, b))
def test_filtfilt_a(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
a.requires_grad = True
with use_deterministic_algorithms(True, False):
self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False)
def test_filtfilt_b(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
b.requires_grad = True
with use_deterministic_algorithms(True, False):
self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False)
def test_filtfilt_all_inputs(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
with use_deterministic_algorithms(True, False):
self.assert_grad(F.filtfilt, (x, a, b))
def test_filtfilt_batching(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]])
b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]])
with use_deterministic_algorithms(True, False):
self.assert_grad(F.filtfilt, (x, a, b))
def test_biquad(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.biquad, (x, b[0], b[1], b[2], a[0], a[1], a[2]))
@parameterized.expand(
[
(800, 0.7, True),
(800, 0.7, False),
]
)
def test_band_biquad(self, central_freq, Q, noise):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.band_biquad, (x, sr, central_freq, Q, noise))
@parameterized.expand(
[
(800, 0.7, 10),
(800, 0.7, -10),
]
)
def test_bass_biquad(self, central_freq, Q, gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
self.assert_grad(F.bass_biquad, (x, sr, gain, central_freq, Q))
@parameterized.expand(
[
(3000, 0.7, 10),
(3000, 0.7, -10),
]
)
def test_treble_biquad(self, central_freq, Q, gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
self.assert_grad(F.treble_biquad, (x, sr, gain, central_freq, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_allpass_biquad(self, central_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.allpass_biquad, (x, sr, central_freq, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_lowpass_biquad(self, cutoff_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
cutoff_freq = torch.tensor(cutoff_freq)
Q = torch.tensor(Q)
self.assert_grad(F.lowpass_biquad, (x, sr, cutoff_freq, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_highpass_biquad(self, cutoff_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
cutoff_freq = torch.tensor(cutoff_freq)
Q = torch.tensor(Q)
self.assert_grad(F.highpass_biquad, (x, sr, cutoff_freq, Q))
@parameterized.expand(
[
(800, 0.7, True),
(800, 0.7, False),
]
)
def test_bandpass_biquad(self, central_freq, Q, const_skirt_gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.bandpass_biquad, (x, sr, central_freq, Q, const_skirt_gain))
@parameterized.expand(
[
(800, 0.7, 10),
(800, 0.7, -10),
]
)
def test_equalizer_biquad(self, central_freq, Q, gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
self.assert_grad(F.equalizer_biquad, (x, sr, central_freq, gain, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_bandreject_biquad(self, central_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.bandreject_biquad, (x, sr, central_freq, Q))
def test_deemph_biquad(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1)
self.assert_grad(F.deemph_biquad, (x, 44100))
def test_flanger(self):
x = get_whitenoise(sample_rate=8000, duration=0.01, n_channels=1)
self.assert_grad(F.flanger, (x, 44100))
def test_gain(self):
x = get_whitenoise(sample_rate=8000, duration=0.01, n_channels=1)
self.assert_grad(F.gain, (x, 1.1))
def test_overdrive(self):
x = get_whitenoise(sample_rate=8000, duration=0.01, n_channels=1)
self.assert_grad(F.gain, (x,))
@parameterized.expand([(True,), (False,)])
def test_phaser(self, sinusoidal):
sr = 8000
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
self.assert_grad(F.phaser, (x, sr, sinusoidal))
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_psd(self, use_mask):
specgram = torch.rand(4, 10, 5, dtype=torch.cfloat)
if use_mask:
mask = torch.rand(10, 5)
else:
mask = None
self.assert_grad(F.psd, (specgram, mask))
def test_mvdr_weights_souden(self):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
self.assert_grad(F.mvdr_weights_souden, (psd_speech, psd_noise, 0))
def test_mvdr_weights_souden_with_tensor(self):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
reference_channel = torch.zeros(channel)
reference_channel[0].fill_(1)
self.assert_grad(F.mvdr_weights_souden, (psd_speech, psd_noise, reference_channel))
def test_mvdr_weights_rtf(self):
batch_size = 2
channel = 4
n_fft_bin = 10
rtf = torch.rand(batch_size, n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(batch_size, n_fft_bin, channel, channel, dtype=self.complex_dtype)
self.assert_grad(F.mvdr_weights_rtf, (rtf, psd_noise, 0))
def test_mvdr_weights_rtf_with_tensor(self):
batch_size = 2
channel = 4
n_fft_bin = 10
rtf = torch.rand(batch_size, n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(batch_size, n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = torch.zeros(batch_size, channel)
reference_channel[..., 0].fill_(1)
self.assert_grad(F.mvdr_weights_rtf, (rtf, psd_noise, reference_channel))
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
self.assert_grad(F.rtf_power, (psd_speech, psd_noise, 0, n_iter, diagonal_loading))
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
reference_channel = torch.zeros(channel)
reference_channel[0].fill_(1)
self.assert_grad(F.rtf_power, (psd_speech, psd_noise, reference_channel, n_iter, diagonal_loading))
def test_apply_beamforming(self):
sr = 8000
n_fft = 400
batch_size, num_channels = 2, 3
n_fft_bin = n_fft // 2 + 1
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=batch_size * num_channels)
specgram = get_spectrogram(x, n_fft=n_fft, hop_length=100)
specgram = specgram.view(batch_size, num_channels, n_fft_bin, specgram.size(-1))
beamform_weights = torch.rand(batch_size, n_fft_bin, num_channels, dtype=torch.cfloat)
self.assert_grad(F.apply_beamforming, (beamform_weights, specgram))
@nested_params(
["convolve", "fftconvolve"],
["full", "valid", "same"],
)
def test_convolve(self, fn, mode):
leading_dims = (4, 3, 2)
L_x, L_y = 23, 40
x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device)
y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device)
self.assert_grad(getattr(F, fn), (x, y, mode))
def test_add_noise(self):
leading_dims = (5, 2, 3)
L = 51
waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device)
noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device)
lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device)
snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device) * 10
self.assert_grad(F.add_noise, (waveform, noise, snr, lengths))
def test_speed(self):
leading_dims = (3, 2)
T = 200
waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True)
lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device)
self.assert_grad(F.speed, (waveform, 1000, 1.1, lengths), enable_all_grad=False)
def test_preemphasis(self):
waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype, requires_grad=True)
coeff = 0.9
self.assert_grad(F.preemphasis, (waveform, coeff))
def test_deemphasis(self):
waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype, requires_grad=True)
coeff = 0.9
self.assert_grad(F.deemphasis, (waveform, coeff))
def test_frechet_distance(self):
N = 16
mu_x = torch.rand((N,))
sigma_x = torch.rand((N, N))
mu_y = torch.rand((N,))
sigma_y = torch.rand((N, N))
self.assert_grad(F.frechet_distance, (mu_x, sigma_x, mu_y, sigma_y))
class AutogradFloat32(TestBaseMixin):
def assert_grad(
self,
transform: Callable[..., Tensor],
inputs: Tuple[torch.Tensor],
enable_all_grad: bool = True,
):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=self.dtype, device=self.device)
if enable_all_grad:
i.requires_grad = True
inputs_.append(i)
# gradcheck with float32 requires higher atol and epsilon
assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.0)
@parameterized.expand(
[
(rnnt_utils.get_B1_T10_U3_D4_data,),
(rnnt_utils.get_B2_T4_U3_D3_data,),
(rnnt_utils.get_B1_T2_U3_D5_data,),
]
)
def test_rnnt_loss(self, data_func):
def get_data(data_func, device):
data = data_func()
if type(data) == tuple:
data = data[0]
return data
data = get_data(data_func, self.device)
inputs = (
data["logits"].to(torch.float32), # logits
data["targets"], # targets
data["logit_lengths"], # logit_lengths
data["target_lengths"], # target_lengths
data["blank"], # blank
-1, # clamp
)
self.assert_grad(F.rnnt_loss, inputs, enable_all_grad=False)
|