1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
|
"""Test suites for jit-ability and its numerical compatibility"""
import unittest
import torch
import torchaudio.functional as F
from parameterized import parameterized
from torchaudio_unittest import common_utils
from torchaudio_unittest.common_utils import skipIfRocm, TempDirMixin, TestBaseMixin, torch_script
class Functional(TempDirMixin, TestBaseMixin):
"""Implements test for `functional` module that are performed for different devices"""
def _assert_consistency(self, func, inputs, shape_only=False):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(device=self.device, dtype=self.dtype)
inputs_.append(i)
ts_func = torch_script(func)
torch.random.manual_seed(40)
output = func(*inputs_)
torch.random.manual_seed(40)
ts_output = ts_func(*inputs_)
if shape_only:
ts_output = ts_output.shape
output = output.shape
self.assertEqual(ts_output, output)
def _assert_consistency_complex(self, func, inputs):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=self.complex_dtype if i.is_complex() else self.dtype, device=self.device)
inputs_.append(i)
ts_func = torch_script(func)
torch.random.manual_seed(40)
output = func(*inputs_)
torch.random.manual_seed(40)
ts_output = ts_func(*inputs_)
self.assertEqual(ts_output, output)
@parameterized.expand(
[
(True,),
(False,),
("window",),
("frame_length",),
]
)
def test_spectrogram(self, normalize):
waveform = common_utils.get_whitenoise()
n_fft = 400
ws = 400
hop = 200
pad = 0
window = torch.hann_window(ws, device=waveform.device, dtype=waveform.dtype)
power = None
self._assert_consistency(
F.spectrogram, (waveform, pad, window, n_fft, hop, ws, power, normalize, True, "reflect", True, True)
)
@parameterized.expand(
[
(True,),
(False,),
("window",),
("frame_length",),
]
)
def test_inverse_spectrogram(self, normalize):
waveform = common_utils.get_whitenoise(sample_rate=8000, duration=0.05)
specgram = common_utils.get_spectrogram(waveform, n_fft=400, hop_length=200)
length = 400
n_fft = 400
hop = 200
ws = 400
pad = 0
window = torch.hann_window(ws, device=specgram.device, dtype=torch.float64)
self._assert_consistency_complex(
F.inverse_spectrogram, (specgram, length, pad, window, n_fft, hop, ws, normalize, True, "reflect", True)
)
@skipIfRocm
def test_griffinlim(self):
tensor = torch.rand((1, 201, 6))
n_fft = 400
ws = 400
hop = 200
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
power = 2.0
momentum = 0.99
n_iter = 32
length = 1000
rand_int = False
self._assert_consistency(
F.griffinlim, (tensor, window, n_fft, hop, ws, power, n_iter, momentum, length, rand_int)
)
def test_compute_deltas(self):
channel = 13
n_mfcc = channel * 3
time = 1021
tensor = torch.randn(channel, n_mfcc, time)
win_length = 2 * 7 + 1
self._assert_consistency(F.compute_deltas, (tensor, win_length, "replicate"))
def test_detect_pitch_frequency(self):
waveform = common_utils.get_sinusoid(sample_rate=44100)
def func(tensor):
sample_rate = 44100
return F.detect_pitch_frequency(tensor, sample_rate)
self._assert_consistency(func, (waveform,))
def test_measure_loudness(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
sample_rate = 44100
waveform = common_utils.get_sinusoid(sample_rate=sample_rate, device=self.device)
self._assert_consistency(F.loudness, (waveform, sample_rate))
def test_melscale_fbanks(self):
if self.device != torch.device("cpu"):
raise unittest.SkipTest("No need to perform test on device other than CPU")
n_stft = 100
f_min = 0.0
f_max = 20.0
n_mels = 10
sample_rate = 16000
norm = "slaney"
self._assert_consistency(F.melscale_fbanks, (n_stft, f_min, f_max, n_mels, sample_rate, norm, "htk"))
def test_linear_fbanks(self):
if self.device != torch.device("cpu"):
raise unittest.SkipTest("No need to perform test on device other than CPU")
n_stft = 100
f_min = 0.0
f_max = 20.0
n_filter = 10
sample_rate = 16000
self._assert_consistency(F.linear_fbanks, (n_stft, f_min, f_max, n_filter, sample_rate))
def test_amplitude_to_DB(self):
tensor = torch.rand((6, 201))
multiplier = 10.0
amin = 1e-10
db_multiplier = 0.0
top_db = 80.0
self._assert_consistency(F.amplitude_to_DB, (tensor, multiplier, amin, db_multiplier, top_db))
def test_DB_to_amplitude(self):
tensor = torch.rand((1, 100))
ref = 1.0
power = 1.0
self._assert_consistency(F.DB_to_amplitude, (tensor, ref, power))
def test_create_dct(self):
if self.device != torch.device("cpu"):
raise unittest.SkipTest("No need to perform test on device other than CPU")
n_mfcc = 40
n_mels = 128
norm = "ortho"
self._assert_consistency(F.create_dct, (n_mfcc, n_mels, norm))
def test_mu_law_encoding(self):
def func(tensor):
qc = 256
return F.mu_law_encoding(tensor, qc)
waveform = common_utils.get_whitenoise()
self._assert_consistency(func, (waveform,))
def test_mu_law_decoding(self):
def func(tensor):
qc = 256
return F.mu_law_decoding(tensor, qc)
tensor = torch.rand((1, 10))
self._assert_consistency(func, (tensor,))
def test_mask_along_axis(self):
def func(tensor):
mask_param = 100
mask_value = 30.0
axis = 2
return F.mask_along_axis(tensor, mask_param, mask_value, axis)
tensor = torch.randn(2, 1025, 400)
self._assert_consistency(func, (tensor,))
def test_mask_along_axis_iid(self):
def func(tensor):
mask_param = 100
mask_value = 30.0
axis = 2
return F.mask_along_axis_iid(tensor, mask_param, mask_value, axis)
tensor = torch.randn(4, 2, 1025, 400)
self._assert_consistency(func, (tensor,))
def test_gain(self):
def func(tensor):
gainDB = 2.0
return F.gain(tensor, gainDB)
tensor = torch.rand((1, 1000))
self._assert_consistency(func, (tensor,))
def test_dither_TPDF(self):
def func(tensor):
return F.dither(tensor, "TPDF")
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,), shape_only=True)
def test_dither_RPDF(self):
def func(tensor):
return F.dither(tensor, "RPDF")
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,), shape_only=True)
def test_dither_GPDF(self):
def func(tensor):
return F.dither(tensor, "GPDF")
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,), shape_only=True)
def test_dither_noise_shaping(self):
def func(tensor):
return F.dither(tensor, noise_shaping=True)
tensor = common_utils.get_whitenoise(n_channels=2)
self._assert_consistency(func, (tensor,))
def test_lfilter(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise()
# Design an IIR lowpass filter using scipy.signal filter design
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign
#
# Example
# >>> from scipy.signal import iirdesign
# >>> b, a = iirdesign(0.2, 0.3, 1, 60)
b_coeffs = torch.tensor(
[
0.00299893,
-0.0051152,
0.00841964,
-0.00747802,
0.00841964,
-0.0051152,
0.00299893,
],
device=waveform.device,
dtype=waveform.dtype,
)
a_coeffs = torch.tensor(
[
1.0,
-4.8155751,
10.2217618,
-12.14481273,
8.49018171,
-3.3066882,
0.56088705,
],
device=waveform.device,
dtype=waveform.dtype,
)
self._assert_consistency(F.lfilter, (waveform, a_coeffs, b_coeffs, True, True))
def test_filtfilt(self):
waveform = common_utils.get_whitenoise(sample_rate=8000)
b_coeffs = torch.rand(4, device=waveform.device, dtype=waveform.dtype)
a_coeffs = torch.rand(4, device=waveform.device, dtype=waveform.dtype)
self._assert_consistency(F.filtfilt, (waveform, a_coeffs, b_coeffs, True))
def test_lowpass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
cutoff_freq = 3000.0
return F.lowpass_biquad(tensor, sample_rate, cutoff_freq)
self._assert_consistency(func, (waveform,))
def test_highpass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
cutoff_freq = 2000.0
return F.highpass_biquad(tensor, sample_rate, cutoff_freq)
self._assert_consistency(func, (waveform,))
def test_allpass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
return F.allpass_biquad(tensor, sample_rate, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_bandpass_with_csg(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
const_skirt_gain = True
return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)
self._assert_consistency(func, (waveform,))
def test_bandpass_without_csg(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
const_skirt_gain = True
return F.bandpass_biquad(tensor, sample_rate, central_freq, q, const_skirt_gain)
self._assert_consistency(func, (waveform,))
def test_bandreject(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
return F.bandreject_biquad(tensor, sample_rate, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_band_with_noise(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
noise = True
return F.band_biquad(tensor, sample_rate, central_freq, q, noise)
self._assert_consistency(func, (waveform,))
def test_band_without_noise(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
central_freq = 1000.0
q = 0.707
noise = False
return F.band_biquad(tensor, sample_rate, central_freq, q, noise)
self._assert_consistency(func, (waveform,))
def test_treble(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
gain = 40.0
central_freq = 1000.0
q = 0.707
return F.treble_biquad(tensor, sample_rate, gain, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_bass(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
gain = 40.0
central_freq = 1000.0
q = 0.707
return F.bass_biquad(tensor, sample_rate, gain, central_freq, q)
self._assert_consistency(func, (waveform,))
def test_deemph(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
return F.deemph_biquad(tensor, sample_rate)
self._assert_consistency(func, (waveform,))
def test_riaa(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
return F.riaa_biquad(tensor, sample_rate)
self._assert_consistency(func, (waveform,))
def test_equalizer(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
sample_rate = 44100
center_freq = 300.0
gain = 1.0
q = 0.707
return F.equalizer_biquad(tensor, sample_rate, center_freq, gain, q)
self._assert_consistency(func, (waveform,))
def test_perf_biquad_filtering(self):
if self.dtype == torch.float64:
raise unittest.SkipTest("This test is known to fail for float64")
waveform = common_utils.get_whitenoise()
def func(tensor):
a = torch.tensor([0.7, 0.2, 0.6], device=tensor.device, dtype=tensor.dtype)
b = torch.tensor([0.4, 0.2, 0.9], device=tensor.device, dtype=tensor.dtype)
return F.lfilter(tensor, a, b)
self._assert_consistency(func, (waveform,))
def test_sliding_window_cmn(self):
def func(tensor):
cmn_window = 600
min_cmn_window = 100
center = False
norm_vars = False
a = torch.tensor(
[[-1.915875792503357, 1.147700309753418], [1.8242558240890503, 1.3869990110397339]],
device=tensor.device,
dtype=tensor.dtype,
)
return F.sliding_window_cmn(a, cmn_window, min_cmn_window, center, norm_vars)
b = torch.tensor([[-1.8701, -0.1196], [1.8701, 0.1196]])
self._assert_consistency(func, (b,))
def test_contrast(self):
waveform = common_utils.get_whitenoise()
def func(tensor):
enhancement_amount = 80.0
return F.contrast(tensor, enhancement_amount)
self._assert_consistency(func, (waveform,))
def test_dcshift(self):
waveform = common_utils.get_whitenoise()
def func(tensor):
shift = 0.5
limiter_gain = 0.05
return F.dcshift(tensor, shift, limiter_gain)
self._assert_consistency(func, (waveform,))
def test_overdrive(self):
waveform = common_utils.get_whitenoise()
def func(tensor):
gain = 30.0
colour = 50.0
return F.overdrive(tensor, gain, colour)
self._assert_consistency(func, (waveform,))
def test_phaser(self):
waveform = common_utils.get_whitenoise(sample_rate=44100)
def func(tensor):
gain_in = 0.5
gain_out = 0.8
delay_ms = 2.0
decay = 0.4
speed = 0.5
sample_rate = 44100
return F.phaser(tensor, sample_rate, gain_in, gain_out, delay_ms, decay, speed, sinusoidal=True)
self._assert_consistency(func, (waveform,))
def test_flanger(self):
waveform = torch.rand(2, 100) - 0.5
def func(tensor):
delay = 0.8
depth = 0.88
regen = 3.0
width = 0.23
speed = 1.3
phase = 60.0
sample_rate = 44100
return F.flanger(
tensor,
sample_rate,
delay,
depth,
regen,
width,
speed,
phase,
modulation="sinusoidal",
interpolation="linear",
)
self._assert_consistency(func, (waveform,))
def test_spectral_centroid(self):
def func(tensor):
sample_rate = 44100
n_fft = 400
ws = 400
hop = 200
pad = 0
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
return F.spectral_centroid(tensor, sample_rate, pad, window, n_fft, hop, ws)
tensor = common_utils.get_whitenoise(sample_rate=44100)
self._assert_consistency(func, (tensor,))
def test_resample_sinc(self):
def func(tensor):
sr1, sr2 = 16000, 8000
return F.resample(tensor, sr1, sr2, resampling_method="sinc_interp_hann")
tensor = common_utils.get_whitenoise(sample_rate=16000)
self._assert_consistency(func, (tensor,))
@parameterized.expand(
[
(None,),
(6.0,),
]
)
def test_resample_kaiser(self, beta):
tensor = common_utils.get_whitenoise(sample_rate=16000)
sr1, sr2 = 16000, 8000
lowpass_filter_width = 6
rolloff = 0.99
self._assert_consistency(
F.resample, (tensor, sr1, sr2, lowpass_filter_width, rolloff, "sinc_interp_kaiser", beta)
)
def test_phase_vocoder(self):
tensor = torch.view_as_complex(torch.randn(2, 1025, 400, 2))
n_freq = tensor.size(-2)
rate = 0.5
hop_length = 256
phase_advance = torch.linspace(
0,
3.14 * hop_length,
n_freq,
dtype=torch.real(tensor).dtype,
device=tensor.device,
)[..., None]
self._assert_consistency_complex(F.phase_vocoder, (tensor, rate, phase_advance))
def test_psd(self):
batch_size = 2
channel = 4
n_fft_bin = 10
frame = 10
normalize = True
eps = 1e-10
tensor = torch.rand(batch_size, channel, n_fft_bin, frame, dtype=self.complex_dtype)
self._assert_consistency_complex(F.psd, (tensor, None, normalize, eps))
def test_psd_with_mask(self):
batch_size = 2
channel = 4
n_fft_bin = 10
frame = 10
normalize = True
eps = 1e-10
specgram = torch.rand(batch_size, channel, n_fft_bin, frame, dtype=self.complex_dtype)
mask = torch.rand(batch_size, n_fft_bin, frame, device=self.device)
self._assert_consistency_complex(F.psd, (specgram, mask, normalize, eps))
def test_mvdr_weights_souden(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
self._assert_consistency_complex(
F.mvdr_weights_souden, (psd_speech, psd_noise, 0, diagonal_loading, diag_eps, eps)
)
def test_mvdr_weights_souden_with_tensor(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
reference_channel = torch.zeros(channel)
reference_channel[..., 0].fill_(1)
self._assert_consistency_complex(
F.mvdr_weights_souden, (psd_speech, psd_noise, reference_channel, diagonal_loading, diag_eps, eps)
)
def test_mvdr_weights_rtf(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
rtf = torch.rand(n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = 0
self._assert_consistency_complex(
F.mvdr_weights_rtf, (rtf, psd_noise, reference_channel, diagonal_loading, diag_eps, eps)
)
def test_mvdr_weights_rtf_with_tensor(self):
channel = 4
n_fft_bin = 10
diagonal_loading = True
diag_eps = 1e-7
eps = 1e-8
rtf = torch.rand(n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = torch.zeros(channel)
reference_channel[..., 0].fill_(1)
self._assert_consistency_complex(
F.mvdr_weights_rtf, (rtf, psd_noise, reference_channel, diagonal_loading, diag_eps, eps)
)
def test_rtf_evd(self):
batch_size = 2
channel = 4
n_fft_bin = 129
tensor = torch.rand(batch_size, n_fft_bin, channel, channel, dtype=self.complex_dtype)
self._assert_consistency_complex(F.rtf_evd, (tensor,))
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 10
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = 0
diag_eps = 1e-7
self._assert_consistency_complex(
F.rtf_power, (psd_speech, psd_noise, reference_channel, n_iter, diagonal_loading, diag_eps)
)
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 10
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = torch.zeros(channel)
reference_channel[..., 0].fill_(1)
diag_eps = 1e-7
self._assert_consistency_complex(
F.rtf_power, (psd_speech, psd_noise, reference_channel, n_iter, diagonal_loading, diag_eps)
)
def test_apply_beamforming(self):
num_channels = 4
n_fft_bin = 201
num_frames = 10
beamform_weights = torch.rand(n_fft_bin, num_channels, dtype=self.complex_dtype, device=self.device)
specgram = torch.rand(num_channels, n_fft_bin, num_frames, dtype=self.complex_dtype, device=self.device)
self._assert_consistency_complex(F.apply_beamforming, (beamform_weights, specgram))
@common_utils.nested_params(
["convolve", "fftconvolve"],
["full", "valid", "same"],
)
def test_convolve(self, fn, mode):
leading_dims = (2, 3, 2)
L_x, L_y = 32, 55
x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device)
y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device)
self._assert_consistency(getattr(F, fn), (x, y, mode))
@common_utils.nested_params([True, False])
def test_add_noise(self, use_lengths):
leading_dims = (2, 3)
L = 31
waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True)
noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True)
else:
lengths = None
snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10
self._assert_consistency(F.add_noise, (waveform, noise, snr, lengths))
@common_utils.nested_params([True, False])
def test_speed(self, use_lengths):
leading_dims = (3, 2)
T = 200
waveform = torch.rand(*leading_dims, T, dtype=self.dtype, device=self.device, requires_grad=True)
if use_lengths:
lengths = torch.randint(1, T, leading_dims, dtype=self.dtype, device=self.device)
else:
lengths = None
self._assert_consistency(F.speed, (waveform, 1000, 1.1, lengths))
def test_preemphasis(self):
waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype)
coeff = 0.9
self._assert_consistency(F.preemphasis, (waveform, coeff))
def test_deemphasis(self):
waveform = torch.rand(3, 2, 100, device=self.device, dtype=self.dtype)
coeff = 0.9
self._assert_consistency(F.deemphasis, (waveform, coeff))
class FunctionalFloat32Only(TestBaseMixin):
def test_rnnt_loss(self):
def func(tensor):
targets = torch.tensor([[1, 2]], device=tensor.device, dtype=torch.int32)
logit_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32)
target_lengths = torch.tensor([2], device=tensor.device, dtype=torch.int32)
return F.rnnt_loss(tensor, targets, logit_lengths, target_lengths)
logits = torch.tensor(
[
[
[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1]],
[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], [0.7, 0.1, 0.2, 0.1, 0.1]],
]
]
)
tensor = logits.to(device=self.device, dtype=torch.float32)
self._assert_consistency(func, (tensor,))
|