1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
|
import io
import torch
import torchaudio
from parameterized import parameterized, parameterized_class
from torchaudio.io import StreamReader, StreamWriter
from torchaudio_unittest.common_utils import (
disabledInCI,
get_asset_path,
get_image,
get_sinusoid,
get_wav_data,
nested_params,
rgb_to_gray,
rgb_to_yuv_ccir,
save_image,
save_wav,
skipIfNoFFmpeg,
skipIfNoHWAccel,
TempDirMixin,
TorchaudioTestCase,
)
from torio.io._streaming_media_decoder import (
ChunkTensor,
OutputAudioStream,
OutputVideoStream,
SourceAudioStream,
SourceStream,
SourceVideoStream,
)
@skipIfNoFFmpeg
class ChunkTensorTest(TorchaudioTestCase):
def test_chunktensor(self):
"""ChunkTensor serves as a replacement of tensor"""
data = torch.randn((256, 2))
pts = 16.0
c = ChunkTensor(data, pts)
assert c.pts == pts
self.assertEqual(c, data)
# method
sum_ = c.sum()
assert isinstance(sum_, torch.Tensor)
self.assertEqual(sum_, data.sum())
# function form
min_ = torch.min(c)
assert isinstance(min_, torch.Tensor)
self.assertEqual(min_, torch.min(data))
# attribute
t = c.T
assert isinstance(t, torch.Tensor)
self.assertEqual(t, data.T)
# in-place op
c[0] = 0
self.assertEqual(c, data)
# pass to other C++ code
buffer = io.BytesIO()
w = StreamWriter(buffer, format="wav")
w.add_audio_stream(8000, 2)
with w.open():
w.write_audio_chunk(0, c)
w.write_audio_chunk(0, c, c.pts)
################################################################################
# Helper decorator and Mixin to duplicate the tests for fileobj
_media_source = parameterized_class(
("test_type",),
[("str",), ("fileobj",), ("bytes",)],
class_name_func=lambda cls, _, params: f'{cls.__name__}_{params["test_type"]}',
)
class _MediaSourceMixin:
def setUp(self):
super().setUp()
self.src = None
def get_src(self, path):
if self.src is not None:
raise ValueError("get_src can be called only once.")
if self.test_type == "str":
self.src = path
elif self.test_type == "fileobj":
self.src = open(path, "rb")
elif self.test_type == "bytes":
with open(path, "rb") as f:
self.src = f.read()
return self.src
def tearDown(self):
if self.test_type == "fileobj" and self.src is not None:
self.src.close()
super().tearDown()
################################################################################
@skipIfNoFFmpeg
@_media_source
class StreamReaderInterfaceTest(_MediaSourceMixin, TempDirMixin, TorchaudioTestCase):
"""Test suite for interface behaviors around StreamReader"""
def get_src(self, file="nasa_13013.mp4"):
return super().get_src(get_asset_path(file))
def test_streamer_invalid_input(self):
"""StreamReader constructor does not segfault but raise an exception when the input is invalid"""
with self.assertRaises(RuntimeError):
StreamReader("foobar")
@nested_params(
[
("foo",),
(
"foo",
"bar",
),
],
[{}, {"sample_rate": "16000"}],
)
def test_streamer_invalide_option(self, invalid_keys, options):
"""When invalid options are given, StreamReader raises an exception with these keys"""
options.update({k: k for k in invalid_keys})
with self.assertRaises(RuntimeError) as ctx:
StreamReader(self.get_src(), option=options)
assert all(k in str(ctx.exception) for k in invalid_keys)
def test_src_info(self):
"""`get_src_stream_info` properly fetches information"""
s = StreamReader(self.get_src())
assert s.num_src_streams == 6
# Note:
# Starting from FFmpeg 4.4, audio/video stream metadata
# include "vendor_id"
ver = torchaudio.utils.ffmpeg_utils.get_versions()["libavutil"]
print(ver)
major, minor, _ = ver
if major >= 57 or (major == 56 and minor >= 70):
base_metadata = {"vendor_id": "[0][0][0][0]"}
else:
base_metadata = {}
expected = [
SourceVideoStream(
media_type="video",
codec="h264",
codec_long_name="H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10",
format="yuv420p",
bit_rate=71925,
num_frames=325,
bits_per_sample=8,
metadata=dict(
base_metadata,
handler_name="\x1fMainconcept Video Media Handler",
language="eng",
),
width=320,
height=180,
frame_rate=25.0,
),
SourceAudioStream(
media_type="audio",
codec="aac",
codec_long_name="AAC (Advanced Audio Coding)",
format="fltp",
bit_rate=72093,
num_frames=103,
bits_per_sample=0,
metadata=dict(
base_metadata,
handler_name="#Mainconcept MP4 Sound Media Handler",
language="eng",
),
sample_rate=8000.0,
num_channels=2,
),
SourceStream(
media_type="subtitle",
codec="mov_text",
codec_long_name="MOV text",
format=None,
bit_rate=None,
num_frames=None,
bits_per_sample=None,
metadata={
"handler_name": "SubtitleHandler",
"language": "eng",
},
),
SourceVideoStream(
media_type="video",
codec="h264",
codec_long_name="H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10",
format="yuv420p",
bit_rate=128783,
num_frames=390,
bits_per_sample=8,
metadata=dict(
base_metadata,
handler_name="\x1fMainconcept Video Media Handler",
language="eng",
),
width=480,
height=270,
frame_rate=29.97002997002997,
),
SourceAudioStream(
media_type="audio",
codec="aac",
codec_long_name="AAC (Advanced Audio Coding)",
format="fltp",
bit_rate=128837,
num_frames=205,
bits_per_sample=0,
metadata=dict(
base_metadata,
handler_name="#Mainconcept MP4 Sound Media Handler",
language="eng",
),
sample_rate=16000.0,
num_channels=2,
),
SourceStream(
media_type="subtitle",
codec="mov_text",
codec_long_name="MOV text",
format=None,
bit_rate=None,
num_frames=None,
bits_per_sample=None,
metadata={
"handler_name": "SubtitleHandler",
"language": "eng",
},
),
]
output = [s.get_src_stream_info(i) for i in range(6)]
assert expected == output
def test_output_info(self):
s = StreamReader(self.get_src())
s.add_audio_stream(-1)
s.add_audio_stream(-1, filter_desc="aresample=8000")
s.add_audio_stream(-1, filter_desc="aformat=sample_fmts=s16p")
s.add_video_stream(-1)
s.add_video_stream(-1, filter_desc="fps=10")
s.add_video_stream(-1, filter_desc="format=rgb24")
s.add_video_stream(-1, filter_desc="scale=w=160:h=90")
# Note:
# Somehow only FFmpeg 5 reports invalid video frame rate. (24576/0)
# FFmpeg 4 and 6 work fine.
# Perhaps this is a regression in FFmpeg or it could actually originate
# from other libraries.
# It consistently fails with FFmpeg installed via conda, so we change
# the value based on FFmpeg version.
ver = torchaudio.utils.ffmpeg_utils.get_versions()["libavutil"]
print(ver)
major, minor, _ = ver
if major == 57:
video_frame_rate = -1
else:
video_frame_rate = 30000 / 1001
print(video_frame_rate)
expected = [
OutputAudioStream(
source_index=4,
filter_description="anull",
media_type="audio",
format="fltp",
sample_rate=16000.0,
num_channels=2,
),
OutputAudioStream(
source_index=4,
filter_description="aresample=8000",
media_type="audio",
format="fltp",
sample_rate=8000.0,
num_channels=2,
),
OutputAudioStream(
source_index=4,
filter_description="aformat=sample_fmts=s16p",
media_type="audio",
format="s16p",
sample_rate=16000.0,
num_channels=2,
),
OutputVideoStream(
source_index=3,
filter_description="null",
media_type="video",
format="yuv420p",
width=480,
height=270,
frame_rate=30000 / 1001,
),
OutputVideoStream(
source_index=3,
filter_description="fps=10",
media_type="video",
format="yuv420p",
width=480,
height=270,
frame_rate=10,
),
OutputVideoStream(
source_index=3,
filter_description="format=rgb24",
media_type="video",
format="rgb24",
width=480,
height=270,
frame_rate=30000 / 1001,
),
OutputVideoStream(
source_index=3,
filter_description="scale=w=160:h=90",
media_type="video",
format="yuv420p",
width=160,
height=90,
frame_rate=30000 / 1001,
),
]
output = [s.get_out_stream_info(i) for i in range(s.num_out_streams)]
assert expected == output
def test_id3tag(self):
"""get_metadata method can fetch id3tag properly"""
s = StreamReader(self.get_src("steam-train-whistle-daniel_simon.mp3"))
output = s.get_metadata()
expected = {
"title": "SoundBible.com Must Credit",
"artist": "SoundBible.com Must Credit",
"date": "2017",
}
assert output == expected
def test_video_metadata(self):
"""get_metadata method can fetch video metadata"""
s = StreamReader(self.get_src())
output = s.get_metadata()
expected = {
"compatible_brands": "isomiso2avc1mp41",
"encoder": "Lavf58.76.100",
"major_brand": "isom",
"minor_version": "512",
}
assert output == expected
def test_src_info_invalid_index(self):
"""`get_src_stream_info` does not segfault but raise an exception when input is invalid"""
s = StreamReader(self.get_src())
for i in [-1, 6, 7, 8]:
with self.assertRaises(RuntimeError):
s.get_src_stream_info(i)
def test_default_streams(self):
"""default stream is not None"""
s = StreamReader(self.get_src())
assert s.default_audio_stream is not None
assert s.default_video_stream is not None
def test_default_audio_stream_none(self):
"""default audio stream is None for video without audio"""
s = StreamReader(self.get_src("nasa_13013_no_audio.mp4"))
assert s.default_audio_stream is None
def test_default_video_stream_none(self):
"""default video stream is None for video with only audio"""
s = StreamReader(self.get_src("nasa_13013_no_video.mp4"))
assert s.default_video_stream is None
def test_num_out_stream(self):
"""num_out_streams gives the correct count of output streams"""
s = StreamReader(self.get_src())
n, m = 6, 4
for i in range(n):
assert s.num_out_streams == i
s.add_audio_stream(frames_per_chunk=-1)
for i in range(m):
assert s.num_out_streams == n - i
s.remove_stream(0)
for i in range(m):
assert s.num_out_streams == n - m + i
s.add_video_stream(frames_per_chunk=-1)
for i in range(n):
assert s.num_out_streams == n - i
s.remove_stream(n - i - 1)
assert s.num_out_streams == 0
def test_basic_audio_stream(self):
"""`add_basic_audio_stream` constructs a correct filter."""
s = StreamReader(self.get_src())
s.add_basic_audio_stream(frames_per_chunk=-1, format=None)
s.add_basic_audio_stream(frames_per_chunk=-1, sample_rate=8000)
s.add_basic_audio_stream(frames_per_chunk=-1, format="s16p")
sinfo = s.get_out_stream_info(0)
assert sinfo.source_index == s.default_audio_stream
assert sinfo.filter_description == "anull"
sinfo = s.get_out_stream_info(1)
assert sinfo.source_index == s.default_audio_stream
assert "aresample=8000" in sinfo.filter_description
sinfo = s.get_out_stream_info(2)
assert sinfo.source_index == s.default_audio_stream
assert "aformat=sample_fmts=s16" in sinfo.filter_description
def test_basic_video_stream(self):
"""`add_basic_video_stream` constructs a correct filter."""
s = StreamReader(self.get_src())
s.add_basic_video_stream(frames_per_chunk=-1, format=None)
s.add_basic_video_stream(frames_per_chunk=-1, width=3, height=5)
s.add_basic_video_stream(frames_per_chunk=-1, frame_rate=7)
s.add_basic_video_stream(frames_per_chunk=-1, format="bgr24")
sinfo = s.get_out_stream_info(0)
assert sinfo.source_index == s.default_video_stream
assert sinfo.filter_description == "null"
sinfo = s.get_out_stream_info(1)
assert sinfo.source_index == s.default_video_stream
assert "scale=width=3:height=5" in sinfo.filter_description
sinfo = s.get_out_stream_info(2)
assert sinfo.source_index == s.default_video_stream
assert "fps=7" in sinfo.filter_description
sinfo = s.get_out_stream_info(3)
assert sinfo.source_index == s.default_video_stream
assert "format=pix_fmts=bgr24" in sinfo.filter_description
def test_remove_streams(self):
"""`remove_stream` removes the correct output stream"""
s = StreamReader(self.get_src())
s.add_basic_audio_stream(frames_per_chunk=-1, sample_rate=24000)
s.add_basic_video_stream(frames_per_chunk=-1, width=16, height=16)
s.add_basic_audio_stream(frames_per_chunk=-1, sample_rate=8000)
sinfo = [s.get_out_stream_info(i) for i in range(3)]
s.remove_stream(1)
del sinfo[1]
assert sinfo == [s.get_out_stream_info(i) for i in range(s.num_out_streams)]
s.remove_stream(1)
del sinfo[1]
assert sinfo == [s.get_out_stream_info(i) for i in range(s.num_out_streams)]
s.remove_stream(0)
del sinfo[0]
assert [] == [s.get_out_stream_info(i) for i in range(s.num_out_streams)]
def test_remove_stream_invalid(self):
"""Attempt to remove invalid output streams raises IndexError"""
s = StreamReader(self.get_src())
for i in range(-3, 3):
with self.assertRaises(RuntimeError):
s.remove_stream(i)
s.add_audio_stream(frames_per_chunk=-1)
for i in range(-3, 3):
if i == 0:
continue
with self.assertRaises(RuntimeError):
s.remove_stream(i)
def test_process_packet(self):
"""`process_packet` method returns 0 while there is a packet in source stream"""
s = StreamReader(self.get_src())
# nasa_1013.mp3 contains 1023 packets.
for _ in range(1023):
code = s.process_packet()
assert code == 0
# now all the packets should be processed, so process_packet returns 1.
code = s.process_packet()
assert code == 1
def test_pop_chunks_no_output_stream(self):
"""`pop_chunks` method returns empty list when there is no output stream"""
s = StreamReader(self.get_src())
assert s.pop_chunks() == []
def test_pop_chunks_empty_buffer(self):
"""`pop_chunks` method returns None when a buffer is empty"""
s = StreamReader(self.get_src())
s.add_basic_audio_stream(frames_per_chunk=-1)
s.add_basic_video_stream(frames_per_chunk=-1)
assert s.pop_chunks() == [None, None]
def test_pop_chunks_exhausted_stream(self):
"""`pop_chunks` method returns None when the source stream is exhausted"""
s = StreamReader(self.get_src())
# video is 16.57 seconds.
# audio streams per 10 second chunk
# video streams per 20 second chunk
# The first `pop_chunk` call should return 2 Tensors (10 second audio and 16.57 second video)
# The second call should return 1 Tensor (6.57 second audio) and None.
# After that, `pop_chunk` should keep returning None-s.
s.add_basic_audio_stream(frames_per_chunk=100, sample_rate=10, buffer_chunk_size=3)
s.add_basic_video_stream(frames_per_chunk=200, frame_rate=10, buffer_chunk_size=3)
s.process_all_packets()
chunks = s.pop_chunks()
assert chunks[0] is not None
assert chunks[1] is not None
assert chunks[0].shape[0] == 100 # audio tensor contains 10 second chunk
assert chunks[1].shape[0] < 200 # video tensor contains less than 20 second chunk
chunks = s.pop_chunks()
assert chunks[0] is not None
assert chunks[1] is None
assert chunks[0].shape[0] < 100 # audio tensor contains less than 10 second chunk
for _ in range(10):
chunks = s.pop_chunks()
assert chunks[0] is None
assert chunks[1] is None
def test_stream_empty(self):
"""`stream` fails when no output stream is configured"""
s = StreamReader(self.get_src())
with self.assertRaises(RuntimeError):
next(s.stream())
def test_stream_smoke_test(self):
"""`stream` streams chunks fine"""
w, h = 256, 198
s = StreamReader(self.get_src())
s.add_basic_audio_stream(frames_per_chunk=2000, sample_rate=8000)
s.add_basic_video_stream(frames_per_chunk=15, frame_rate=60, width=w, height=h)
for i, (achunk, vchunk) in enumerate(s.stream()):
assert achunk.shape == torch.Size([2000, 2])
assert vchunk.shape == torch.Size([15, 3, h, w])
if i >= 40:
break
def test_stream_requires_grad_false(self):
"""Tensors produced by StreamReader are requires_grad=False"""
s = StreamReader(self.get_src())
s.add_basic_audio_stream(frames_per_chunk=2000)
s.add_basic_video_stream(frames_per_chunk=15)
s.fill_buffer()
audio, video = s.pop_chunks()
assert not audio._elem.requires_grad
assert not video._elem.requires_grad
@parameterized.expand(["key", "any", "precise"])
def test_seek(self, mode):
"""Calling `seek` multiple times should not segfault"""
s = StreamReader(self.get_src())
for i in range(10):
s.seek(i, mode)
for _ in range(0):
s.seek(0, mode)
for i in range(10, 0, -1):
s.seek(i, mode)
def test_seek_negative(self):
"""Calling `seek` with negative value should raise an exception"""
s = StreamReader(self.get_src())
with self.assertRaises(RuntimeError):
s.seek(-1.0)
def test_seek_invalid_mode(self):
"""Calling `seek` with an invalid model should raise an exception"""
s = StreamReader(self.get_src())
with self.assertRaises(ValueError):
s.seek(10, "magic_seek")
@parameterized.expand(
[
# Test keyframe seek
# The source mp4 video has two key frames the first frame and 203rd frame at 8.08 second.
# If the seek time stamp is smaller than 8.08, it will seek into the first frame at 0.0 second.
("nasa_13013.mp4", "key", 0.2, (0, slice(None))),
("nasa_13013.mp4", "key", 8.04, (0, slice(None))),
("nasa_13013.mp4", "key", 8.08, (0, slice(202, None))),
("nasa_13013.mp4", "key", 8.12, (0, slice(202, None))),
# The source avi video has one keyframe every twelve frames 0, 12, 24,.. or every 0.4004 seconds.
# if we seek to a time stamp smaller than 0.4004 it will seek into the first frame at 0.0 second.
("nasa_13013.avi", "key", 0.2, (0, slice(None))),
("nasa_13013.avi", "key", 1.01, (0, slice(24, None))),
("nasa_13013.avi", "key", 7.37, (0, slice(216, None))),
("nasa_13013.avi", "key", 7.7, (0, slice(216, None))),
# Test precise seek
("nasa_13013.mp4", "precise", 0.0, (0, slice(None))),
("nasa_13013.mp4", "precise", 0.2, (0, slice(5, None))),
("nasa_13013.mp4", "precise", 8.04, (0, slice(201, None))),
("nasa_13013.mp4", "precise", 8.08, (0, slice(202, None))),
("nasa_13013.mp4", "precise", 8.12, (0, slice(203, None))),
("nasa_13013.avi", "precise", 0.0, (0, slice(None))),
("nasa_13013.avi", "precise", 0.2, (0, slice(1, None))),
("nasa_13013.avi", "precise", 8.1, (0, slice(238, None))),
("nasa_13013.avi", "precise", 8.14, (0, slice(239, None))),
("nasa_13013.avi", "precise", 8.17, (0, slice(240, None))),
# Test precise seek on video with missing PTS
("RATRACE_wave_f_nm_np1_fr_goo_37.avi", "precise", 0.0, (0, slice(None))),
("RATRACE_wave_f_nm_np1_fr_goo_37.avi", "precise", 0.2, (0, slice(4, None))),
("RATRACE_wave_f_nm_np1_fr_goo_37.avi", "precise", 0.3, (0, slice(7, None))),
# Test any seek
# The source avi video has one keyframe every twelve frames 0, 12, 24,.. or every 0.4004 seconds.
("nasa_13013.avi", "any", 0.0, (0, slice(None))),
("nasa_13013.avi", "any", 0.56, (0, slice(12, None))),
("nasa_13013.avi", "any", 7.77, (0, slice(228, None))),
("nasa_13013.avi", "any", 0.2002, (11, slice(12, None))),
("nasa_13013.avi", "any", 0.233567, (10, slice(12, None))),
("nasa_13013.avi", "any", 0.266933, (9, slice(12, None))),
]
)
def test_seek_modes(self, src, mode, seek_time, ref_indices):
"""We expect the following behaviour from the diferent kinds of seek:
- `key`: the reader will seek to the first keyframe from the timestamp given
- `precise`: the reader will seek to the first keyframe from the timestamp given
and start decoding from that position until the given timestmap (discarding all frames in between)
- `any`: the reader will seek to the colsest frame to the timestamp
given but if this is not a keyframe, the content will be the delta from other frames
To thest this behaviour we can parameterize the test with the tupple ref_indices. ref_indices[0]
is the expected index on the frames list decoded after seek and ref_indices[1] is exepected index for
the list of all frames decoded from the begining (reference frames). This test checks if
the reference frame at index ref_indices[1] is the same as ref_indices[0]. Plese note that with `any`
and `key` seek we only compare keyframes, but with `precise` seek we can compare any frame content.
"""
# Using the first video stream (which is not default video stream)
stream_index = 0
# Decode all frames for reference
src_bin = self.get_src(src)
s = StreamReader(src_bin)
s.add_basic_video_stream(-1, stream_index=stream_index)
s.process_all_packets()
(ref_frames,) = s.pop_chunks()
s.seek(seek_time, mode=mode)
s.process_all_packets()
(frame,) = s.pop_chunks()
hyp_index, ref_index = ref_indices
hyp, ref = frame[hyp_index:], ref_frames[ref_index]
print(hyp.shape, ref.shape)
self.assertEqual(hyp, ref)
@parameterized.expand(
[
("nasa_13013.mp4", [195, 3, 270, 480]),
# RATRACE does not have valid PTS metadata.
("RATRACE_wave_f_nm_np1_fr_goo_37.avi", [36, 3, 240, 560]),
]
)
def test_change_fps(self, src, shape):
"""Can change the FPS of videos"""
tgt_frame_rate = 15
s = StreamReader(self.get_src(src))
info = s.get_src_stream_info(s.default_video_stream)
assert info.frame_rate != tgt_frame_rate
s.add_basic_video_stream(frames_per_chunk=-1, frame_rate=tgt_frame_rate)
s.process_all_packets()
(chunk,) = s.pop_chunks()
assert chunk.shape == torch.Size(shape)
def test_invalid_chunk_option(self):
"""Passing invalid `frames_per_chunk` and `buffer_chunk_size` raises error"""
s = StreamReader(self.get_src())
for fpc, bcs in ((0, 3), (3, 0), (-2, 3), (3, -2)):
with self.assertRaises(RuntimeError):
s.add_audio_stream(frames_per_chunk=fpc, buffer_chunk_size=bcs)
with self.assertRaises(RuntimeError):
s.add_video_stream(frames_per_chunk=fpc, buffer_chunk_size=bcs)
def test_unchunked_stream(self):
"""`frames_per_chunk=-1` disable chunking.
When chunking is disabled, frames contained in one AVFrame become one chunk.
For video, that is always one frame, but for audio, it depends.
"""
s = StreamReader(self.get_src())
s.add_video_stream(frames_per_chunk=-1, buffer_chunk_size=10000)
s.add_audio_stream(frames_per_chunk=-1, buffer_chunk_size=10000)
s.process_all_packets()
video, audio = s.pop_chunks()
assert video.shape == torch.Size([390, 3, 270, 480])
assert audio.shape == torch.Size([208896, 2])
@parameterized.expand([(1,), (3,), (5,), (10,)])
def test_frames_per_chunk(self, fpc):
"""Changing frames_per_chunk does not change the returned content"""
src = self.get_src()
s = StreamReader(src)
s.add_video_stream(frames_per_chunk=-1, buffer_chunk_size=-1)
s.add_audio_stream(frames_per_chunk=-1, buffer_chunk_size=-1)
s.process_all_packets()
ref_video, ref_audio = s.pop_chunks()
if self.test_type == "fileobj":
src.seek(0)
s = StreamReader(src)
s.add_video_stream(frames_per_chunk=fpc, buffer_chunk_size=-1)
s.add_audio_stream(frames_per_chunk=fpc, buffer_chunk_size=-1)
chunks = list(s.stream())
video_chunks = torch.cat([c[0] for c in chunks if c[0] is not None])
audio_chunks = torch.cat([c[1] for c in chunks if c[1] is not None])
self.assertEqual(ref_video, video_chunks)
self.assertEqual(ref_audio, audio_chunks)
def test_buffer_chunk_size(self):
"""`buffer_chunk_size=-1` does not drop frames."""
src = self.get_src()
s = StreamReader(src)
s.add_video_stream(frames_per_chunk=30, buffer_chunk_size=-1)
s.add_audio_stream(frames_per_chunk=16000, buffer_chunk_size=-1)
s.process_all_packets()
for _ in range(13):
video, audio = s.pop_chunks()
assert video.shape == torch.Size([30, 3, 270, 480])
assert audio.shape == torch.Size([16000, 2])
video, audio = s.pop_chunks()
assert video is None
assert audio.shape == torch.Size([896, 2])
if self.test_type == "fileobj":
src.seek(0)
s = StreamReader(src)
s.add_video_stream(frames_per_chunk=30, buffer_chunk_size=3)
s.add_audio_stream(frames_per_chunk=16000, buffer_chunk_size=3)
s.process_all_packets()
for _ in range(2):
video, audio = s.pop_chunks()
assert video.shape == torch.Size([30, 3, 270, 480])
assert audio.shape == torch.Size([16000, 2])
video, audio = s.pop_chunks()
assert video.shape == torch.Size([30, 3, 270, 480])
assert audio.shape == torch.Size([896, 2])
@parameterized.expand([(1,), (3,), (5,), (10,)])
def test_video_pts(self, fpc):
"""PTS values of the first frame are reported in .pts attribute"""
rate, num_frames = 30000 / 1001, 390
ref_pts = [i / rate for i in range(0, num_frames, fpc)]
s = StreamReader(self.get_src())
s.add_video_stream(fpc)
pts = [video.pts for video, in s.stream()]
self.assertEqual(pts, ref_pts)
@parameterized.expand([(256,), (512,), (1024,), (4086,)])
def test_audio_pts(self, fpc):
"""PTS values of the first frame are reported in .pts attribute"""
rate, num_frames = 16000, 208896
ref_pts = [i / rate for i in range(0, num_frames, fpc)]
s = StreamReader(self.get_src())
s.add_audio_stream(fpc, buffer_chunk_size=-1)
pts = [audio.pts for audio, in s.stream()]
self.assertEqual(pts, ref_pts)
def test_pts_unchunked_process_all(self):
"""PTS is zero when loading the entire media with unchunked buffer"""
s = StreamReader(self.get_src())
s.add_audio_stream(-1, buffer_chunk_size=-1)
s.add_video_stream(-1, buffer_chunk_size=-1)
s.process_all_packets()
audio, video = s.pop_chunks()
assert audio.pts == 0.0
assert video.pts == 0.0
assert audio.size(0) == 208896
assert video.size(0) == 390
def test_pts_unchunked(self):
"""PTS grows proportionally to the number of frames decoded"""
s = StreamReader(self.get_src())
s.add_audio_stream(-1, buffer_chunk_size=-1)
s.add_video_stream(-1, buffer_chunk_size=-1)
num_audio_frames, num_video_frames = 0, 0
while num_audio_frames < 208896 and num_video_frames < 390:
s.process_packet()
audio, video = s.pop_chunks()
if audio is None and video is None:
continue
if audio is not None:
assert audio.pts == num_audio_frames / 16000
num_audio_frames += audio.size(0)
if video is not None:
assert video.pts == num_video_frames * 1001 / 30000
num_video_frames += video.size(0)
def _to_fltp(original):
"""Convert Tensor to float32 with value range [-1, 1]"""
denom = {
torch.uint8: 2**7,
torch.int16: 2**15,
torch.int32: 2**31,
}[original.dtype]
fltp = original.to(torch.float32)
if original.dtype == torch.uint8:
fltp -= 128
fltp /= denom
return fltp
@skipIfNoFFmpeg
@_media_source
class StreamReaderAudioTest(_MediaSourceMixin, TempDirMixin, TorchaudioTestCase):
"""Test suite for audio streaming"""
def _get_reference_wav(self, sample_rate, channels_first=False, **kwargs):
data = get_wav_data(**kwargs, normalize=False, channels_first=channels_first)
path = self.get_temp_path("ref.wav")
save_wav(path, data, sample_rate, channels_first=channels_first)
return path, data
def get_src(self, *args, **kwargs):
path, data = self._get_reference_wav(*args, **kwargs)
src = super().get_src(path)
return src, data
def _test_wav(self, src, original, fmt):
s = StreamReader(src)
s.add_basic_audio_stream(frames_per_chunk=-1, format=fmt)
s.process_all_packets()
(output,) = s.pop_chunks()
self.assertEqual(original, output)
@nested_params(
["int16", "uint8", "int32"], # "float", "double", "int64"]
[1, 2, 4, 8],
)
def test_basic_audio_stream(self, dtype, num_channels):
"""`basic_audio_stream` can load WAV file properly."""
src, original = self.get_src(8000, dtype=dtype, num_channels=num_channels)
fmt = {
"uint8": "u8p",
"int16": "s16p",
"int32": "s32p",
}[dtype]
# provide the matching dtype
self._test_wav(src, original, fmt=fmt)
# use the internal dtype ffmpeg picks
if self.test_type == "fileobj":
src.seek(0)
self._test_wav(src, original, fmt=None)
def test_audio_stream_format(self):
"`format` argument properly changes the sample format of decoded audio"
num_channels = 2
src, s32 = self.get_src(8000, dtype="int32", num_channels=num_channels)
args = {
"num_channels": num_channels,
"normalize": False,
"channels_first": False,
"num_frames": 1 << 16,
}
u8 = get_wav_data("uint8", **args)
s16 = get_wav_data("int16", **args)
s64 = s32.to(torch.int64) * (1 << 32)
f32 = get_wav_data("float32", **args)
f64 = get_wav_data("float64", **args)
s = StreamReader(src)
s.add_basic_audio_stream(frames_per_chunk=-1, format="u8")
s.add_basic_audio_stream(frames_per_chunk=-1, format="u8p")
s.add_basic_audio_stream(frames_per_chunk=-1, format="s16")
s.add_basic_audio_stream(frames_per_chunk=-1, format="s16p")
s.add_basic_audio_stream(frames_per_chunk=-1, format="s32")
s.add_basic_audio_stream(frames_per_chunk=-1, format="s32p")
s.add_basic_audio_stream(frames_per_chunk=-1, format="s64")
s.add_basic_audio_stream(frames_per_chunk=-1, format="s64p")
s.add_basic_audio_stream(frames_per_chunk=-1, format="flt")
s.add_basic_audio_stream(frames_per_chunk=-1, format="fltp")
s.add_basic_audio_stream(frames_per_chunk=-1, format="dbl")
s.add_basic_audio_stream(frames_per_chunk=-1, format="dblp")
s.process_all_packets()
chunks = s.pop_chunks()
self.assertEqual(chunks[0], u8, atol=1, rtol=0)
self.assertEqual(chunks[1], u8, atol=1, rtol=0)
self.assertEqual(chunks[2], s16)
self.assertEqual(chunks[3], s16)
self.assertEqual(chunks[4], s32)
self.assertEqual(chunks[5], s32)
self.assertEqual(chunks[6], s64)
self.assertEqual(chunks[7], s64)
self.assertEqual(chunks[8], f32)
self.assertEqual(chunks[9], f32)
self.assertEqual(chunks[10], f64)
self.assertEqual(chunks[11], f64)
@nested_params([4000, 16000])
def test_basic_audio_stream_sample_rate(self, sr):
"""`sample_rate` argument changes the sample_rate of decoded audio"""
src_num_channels, src_sr = 2, 8000
data = get_sinusoid(sample_rate=src_sr, n_channels=src_num_channels, channels_first=False)
path = self.get_temp_path("ref.wav")
save_wav(path, data, src_sr, channels_first=False)
s = StreamReader(path)
s.add_basic_audio_stream(frames_per_chunk=-1, format="flt", sample_rate=sr)
self.assertEqual(s.get_src_stream_info(0).sample_rate, src_sr)
self.assertEqual(s.get_out_stream_info(0).sample_rate, sr)
s.process_all_packets()
(chunks,) = s.pop_chunks()
self.assertEqual(chunks.shape, [sr, src_num_channels])
@nested_params([1, 2, 3, 8, 16])
def test_basic_audio_stream_num_channels(self, num_channels):
"""`sample_rate` argument changes the number of channels of decoded audio"""
src_num_channels, sr = 2, 8000
data = get_sinusoid(sample_rate=sr, n_channels=src_num_channels, channels_first=False)
path = self.get_temp_path("ref.wav")
save_wav(path, data, sr, channels_first=False)
s = StreamReader(path)
s.add_basic_audio_stream(frames_per_chunk=-1, format="flt", num_channels=num_channels)
self.assertEqual(s.get_src_stream_info(0).num_channels, src_num_channels)
self.assertEqual(s.get_out_stream_info(0).num_channels, num_channels)
s.process_all_packets()
(chunks,) = s.pop_chunks()
self.assertEqual(chunks.shape, [sr, num_channels])
@nested_params(
["int16", "uint8", "int32"], # "float", "double", "int64"]
[1, 2, 4, 8],
)
def test_audio_stream(self, dtype, num_channels):
"""`add_audio_stream` can apply filter"""
src, original = self.get_src(8000, dtype=dtype, num_channels=num_channels)
expected = torch.flip(original, dims=(0,))
s = StreamReader(src)
s.add_audio_stream(frames_per_chunk=-1, filter_desc="areverse")
s.process_all_packets()
(output,) = s.pop_chunks()
self.assertEqual(expected, output)
@nested_params(
["int16", "uint8", "int32"], # "float", "double", "int64"]
[1, 2, 4, 8],
)
def test_audio_seek(self, dtype, num_channels):
"""`seek` changes the position properly"""
src, original = self.get_src(1, dtype=dtype, num_channels=num_channels, num_frames=30)
for t in range(10, 20):
expected = original[t:, :]
if self.test_type == "fileobj":
src.seek(0)
s = StreamReader(src)
s.add_audio_stream(frames_per_chunk=-1)
s.seek(float(t))
s.process_all_packets()
(output,) = s.pop_chunks()
self.assertEqual(expected, output)
def test_audio_seek_multiple(self):
"""Calling `seek` after streaming is started should change the position properly"""
src, original = self.get_src(1, dtype="int16", num_channels=2, num_frames=30)
s = StreamReader(src)
s.add_audio_stream(frames_per_chunk=-1)
ts = list(range(20)) + list(range(20, 0, -1)) + list(range(20))
for t in ts:
s.seek(float(t))
s.process_all_packets()
(output,) = s.pop_chunks()
expected = original[t:, :]
self.assertEqual(expected, output)
@nested_params(
[
(18, 6, 3), # num_frames is divisible by frames_per_chunk
(18, 5, 4), # num_frames is not divisible by frames_per_chunk
(18, 32, 1), # num_frames is shorter than frames_per_chunk
],
[1, 2, 4, 8],
)
def test_audio_frames_per_chunk(self, frame_param, num_channels):
"""Different chunk parameter covers the source media properly"""
num_frames, frames_per_chunk, buffer_chunk_size = frame_param
src, original = self.get_src(
8000, dtype="int16", num_channels=num_channels, num_frames=num_frames, channels_first=False
)
s = StreamReader(src)
s.add_audio_stream(frames_per_chunk=frames_per_chunk, buffer_chunk_size=buffer_chunk_size)
i, outputs = 0, []
for (output,) in s.stream():
expected = original[frames_per_chunk * i : frames_per_chunk * (i + 1), :]
outputs.append(output)
self.assertEqual(expected, output)
i += 1
assert i == num_frames // frames_per_chunk + (1 if num_frames % frames_per_chunk else 0)
self.assertEqual(torch.cat(outputs, 0), original)
@skipIfNoFFmpeg
@_media_source
class StreamReaderImageTest(_MediaSourceMixin, TempDirMixin, TorchaudioTestCase):
def _get_reference_png(self, width: int, height: int, grayscale: bool):
original = get_image(width, height, grayscale=grayscale)
path = self.get_temp_path("ref.png")
save_image(path, original, mode="L" if grayscale else "RGB")
return path, original
def get_src(self, *args, **kwargs):
path, data = self._get_reference_png(*args, **kwargs)
src = super().get_src(path)
return src, data
def _test_png(self, path, original, format=None):
s = StreamReader(path)
s.add_basic_video_stream(frames_per_chunk=-1, format=format)
s.process_all_packets()
(output,) = s.pop_chunks()
self.assertEqual(original, output)
@nested_params([True, False])
def test_png(self, grayscale):
# TODO:
# Add test with alpha channel (RGBA, ARGB, BGRA, ABGR)
w, h = 32, 18
src, original = self.get_src(w, h, grayscale=grayscale)
expected = original[None, ...]
self._test_png(src, expected)
@parameterized.expand(
[
("hflip", 2),
("vflip", 1),
]
)
def test_png_effect(self, filter_desc, index):
h, w = 111, 250
src, original = self.get_src(w, h, grayscale=False)
expected = torch.flip(original, dims=(index,))[None, ...]
s = StreamReader(src)
s.add_video_stream(frames_per_chunk=-1, filter_desc=filter_desc)
s.process_all_packets()
output = s.pop_chunks()[0]
print("expected", expected)
print("output", output)
self.assertEqual(expected, output)
def test_png_yuv_read_out(self):
"""Providing format prpoerly change the color space"""
rgb = torch.empty(1, 3, 256, 256, dtype=torch.uint8)
rgb[0, 0] = torch.arange(256, dtype=torch.uint8).reshape([1, -1])
rgb[0, 1] = torch.arange(256, dtype=torch.uint8).reshape([-1, 1])
alpha = torch.full((1, 1, 256, 256), 255, dtype=torch.uint8)
for i in range(256):
rgb[0, 2] = i
path = self.get_temp_path(f"ref_{i}.png")
save_image(path, rgb[0], mode="RGB")
rgb16 = ((rgb.to(torch.int32) - 128) << 8).to(torch.int16)
yuv = rgb_to_yuv_ccir(rgb)
yuv16 = yuv.to(torch.int16) * 4
bgr = rgb[:, [2, 1, 0], :, :]
gray = rgb_to_gray(rgb)
argb = torch.cat([alpha, rgb], dim=1)
rgba = torch.cat([rgb, alpha], dim=1)
abgr = torch.cat([alpha, bgr], dim=1)
bgra = torch.cat([bgr, alpha], dim=1)
s = StreamReader(path)
s.add_basic_video_stream(frames_per_chunk=-1, format="yuv444p")
s.add_basic_video_stream(frames_per_chunk=-1, format="yuv420p")
s.add_basic_video_stream(frames_per_chunk=-1, format="nv12")
s.add_basic_video_stream(frames_per_chunk=-1, format="rgb24")
s.add_basic_video_stream(frames_per_chunk=-1, format="bgr24")
s.add_basic_video_stream(frames_per_chunk=-1, format="gray8")
s.add_basic_video_stream(frames_per_chunk=-1, format="rgb48le")
s.add_basic_video_stream(frames_per_chunk=-1, format="argb")
s.add_basic_video_stream(frames_per_chunk=-1, format="rgba")
s.add_basic_video_stream(frames_per_chunk=-1, format="abgr")
s.add_basic_video_stream(frames_per_chunk=-1, format="bgra")
s.add_basic_video_stream(frames_per_chunk=-1, format="yuv420p10le")
s.process_all_packets()
chunks = s.pop_chunks()
self.assertEqual(chunks[0], yuv, atol=1, rtol=0)
self.assertEqual(chunks[1], yuv, atol=1, rtol=0)
self.assertEqual(chunks[2], yuv, atol=1, rtol=0)
self.assertEqual(chunks[3], rgb, atol=0, rtol=0)
self.assertEqual(chunks[4], bgr, atol=0, rtol=0)
self.assertEqual(chunks[5], gray, atol=1, rtol=0)
self.assertEqual(chunks[6], rgb16, atol=256, rtol=0)
self.assertEqual(chunks[7], argb, atol=0, rtol=0)
self.assertEqual(chunks[8], rgba, atol=0, rtol=0)
self.assertEqual(chunks[9], abgr, atol=0, rtol=0)
self.assertEqual(chunks[10], bgra, atol=0, rtol=0)
self.assertEqual(chunks[11], yuv16, atol=4, rtol=0)
@skipIfNoHWAccel("h264_cuvid")
class CuvidHWAccelInterfaceTest(TorchaudioTestCase):
def test_dup_hw_acel(self):
"""Specifying the same source stream with and without HW accel should fail (instead of segfault later)"""
src = get_asset_path("nasa_13013.mp4")
r = StreamReader(src)
r.add_video_stream(-1, decoder="h264_cuvid")
with self.assertRaises(RuntimeError):
r.add_video_stream(-1, decoder="h264_cuvid", hw_accel="cuda")
r = StreamReader(src)
r.add_video_stream(-1, decoder="h264_cuvid", hw_accel="cuda")
with self.assertRaises(RuntimeError):
r.add_video_stream(-1, decoder="h264_cuvid")
@_media_source
class CudaDecoderTest(_MediaSourceMixin, TempDirMixin, TorchaudioTestCase):
def _test_decode(
self,
decoder: str,
src_path: str,
height: int,
width: int,
ref_num_frames: int,
hw_accel=None,
decoder_option=None,
dtype: torch.dtype = torch.uint8,
):
src = self.get_src(get_asset_path(src_path))
r = StreamReader(src)
r.add_video_stream(10, decoder=decoder, decoder_option=decoder_option, hw_accel=hw_accel)
num_frames = 0
for (chunk,) in r.stream():
self.assertEqual(chunk.device, torch.device(hw_accel or "cpu"))
self.assertEqual(chunk.dtype, dtype)
self.assertEqual(chunk.shape, torch.Size([10, 3, height, width]))
num_frames += chunk.size(0)
assert num_frames == ref_num_frames
@skipIfNoHWAccel("h264_cuvid")
def test_h264_cuvid(self):
"""GPU decoder works for H264"""
self._test_decode("h264_cuvid", "nasa_13013.mp4", 270, 480, 390)
@skipIfNoHWAccel("h264_cuvid")
def test_h264_cuvid_hw_accel(self):
"""GPU decoder works for H264 with HW acceleration, and put the frames on CUDA tensor"""
self._test_decode("h264_cuvid", "nasa_13013.mp4", 270, 480, 390, hw_accel="cuda:0")
@skipIfNoHWAccel("h264_cuvid")
def test_h264_cuvid_hw_accel_resize(self):
"""GPU decoder works for H264 with HW acceleration and resize option"""
w, h = 240, 136
self._test_decode(
"h264_cuvid", "nasa_13013.mp4", h, w, 390, hw_accel="cuda:0", decoder_option={"resize": f"{w}x{h}"}
)
@skipIfNoHWAccel("h264_cuvid")
def test_h264_cuvid_hw_accel_crop(self):
"""GPU decoder works for H264 with HW acceleration and crop option"""
top, bottom, left, right = 3, 5, 7, 9
self._test_decode(
"h264_cuvid",
"nasa_13013.mp4",
262,
464,
390,
hw_accel="cuda:0",
decoder_option={"crop": f"{top}x{bottom}x{left}x{right}"},
)
@skipIfNoHWAccel("hevc_cuvid")
def test_hevc_cuvid(self):
"""GPU decoder works for H265/HEVC"""
self._test_decode("hevc_cuvid", "testsrc.hevc", 144, 256, 300)
@skipIfNoHWAccel("hevc_cuvid")
def test_hevc_cuvid_hw_accel(self):
"""GPU decoder works for H265/HEVC with HW acceleration, and put the frames on CUDA tensor"""
self._test_decode("hevc_cuvid", "testsrc.hevc", 144, 256, 300, hw_accel="cuda:0", dtype=torch.int16)
@skipIfNoHWAccel("hevc_cuvid")
def test_hevc_cuvid_hw_accel_resize(self):
"""GPU decoder works for H265/HEVC with HW acceleration and resize option"""
w, h = 128, 64
self._test_decode(
"hevc_cuvid",
"testsrc.hevc",
h,
w,
300,
hw_accel="cuda:0",
dtype=torch.int16,
decoder_option={"resize": f"{w}x{h}"},
)
@skipIfNoHWAccel("hevc_cuvid")
def test_hevc_cuvid_hw_accel_crop(self):
"""GPU decoder works for H265/HEVC with HW acceleration and crop option"""
top, bottom, left, right = 3, 5, 7, 9
self._test_decode(
"hevc_cuvid",
"testsrc.hevc",
136,
240,
300,
hw_accel="cuda:0",
dtype=torch.int16,
decoder_option={"crop": f"{top}x{bottom}x{left}x{right}"},
)
@skipIfNoHWAccel("h264_cuvid")
# Disabled in CI: https://github.com/pytorch/audio/issues/3376
@disabledInCI
class FilterGraphWithCudaAccel(TorchaudioTestCase):
def test_sclae_cuda_change_size(self):
"""scale_cuda filter can be used when HW accel is on"""
src = get_asset_path("nasa_13013.mp4")
r = StreamReader(src)
r.add_video_stream(10, decoder="h264_cuvid", hw_accel="cuda", filter_desc="scale_cuda=iw/2:ih/2")
num_frames = 0
for (chunk,) in r.stream():
self.assertEqual(chunk.device, torch.device("cuda:0"))
self.assertEqual(chunk.dtype, torch.uint8)
self.assertEqual(chunk.shape, torch.Size([10, 3, 135, 240]))
num_frames += chunk.size(0)
assert num_frames == 390
def test_scale_cuda_format(self):
"""yuv444p format conversion should work"""
src = get_asset_path("nasa_13013.mp4")
r = StreamReader(src)
r.add_video_stream(10, decoder="h264_cuvid", hw_accel="cuda", filter_desc="scale_cuda=format=yuv444p")
num_frames = 0
for (chunk,) in r.stream():
self.assertEqual(chunk.device, torch.device("cuda:0"))
self.assertEqual(chunk.dtype, torch.uint8)
self.assertEqual(chunk.shape, torch.Size([10, 3, 270, 480]))
num_frames += chunk.size(0)
assert num_frames == 390
|