1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
import itertools
from collections import namedtuple
import torch
from parameterized import parameterized
from torchaudio.models import ConvTasNet, DeepSpeech, Wav2Letter, WaveRNN
from torchaudio.models.wavernn import MelResNet, UpsampleNetwork
from torchaudio_unittest import common_utils
from torchaudio_unittest.common_utils import torch_script
class TestWav2Letter(common_utils.TorchaudioTestCase):
def test_waveform(self):
batch_size = 2
num_features = 1
num_classes = 40
input_length = 320
model = Wav2Letter(num_classes=num_classes, num_features=num_features)
x = torch.rand(batch_size, num_features, input_length)
out = model(x)
assert out.size() == (batch_size, num_classes, 2)
def test_mfcc(self):
batch_size = 2
num_features = 13
num_classes = 40
input_length = 2
model = Wav2Letter(num_classes=num_classes, input_type="mfcc", num_features=num_features)
x = torch.rand(batch_size, num_features, input_length)
out = model(x)
assert out.size() == (batch_size, num_classes, 2)
class TestMelResNet(common_utils.TorchaudioTestCase):
def test_waveform(self):
"""Validate the output dimensions of a MelResNet block."""
n_batch = 2
n_time = 200
n_freq = 100
n_output = 128
n_res_block = 10
n_hidden = 128
kernel_size = 5
model = MelResNet(n_res_block, n_freq, n_hidden, n_output, kernel_size)
x = torch.rand(n_batch, n_freq, n_time)
out = model(x)
assert out.size() == (n_batch, n_output, n_time - kernel_size + 1)
class TestUpsampleNetwork(common_utils.TorchaudioTestCase):
def test_waveform(self):
"""Validate the output dimensions of a UpsampleNetwork block."""
upsample_scales = [5, 5, 8]
n_batch = 2
n_time = 200
n_freq = 100
n_output = 256
n_res_block = 10
n_hidden = 128
kernel_size = 5
total_scale = 1
for upsample_scale in upsample_scales:
total_scale *= upsample_scale
model = UpsampleNetwork(upsample_scales, n_res_block, n_freq, n_hidden, n_output, kernel_size)
x = torch.rand(n_batch, n_freq, n_time)
out1, out2 = model(x)
assert out1.size() == (n_batch, n_freq, total_scale * (n_time - kernel_size + 1))
assert out2.size() == (n_batch, n_output, total_scale * (n_time - kernel_size + 1))
class TestWaveRNN(common_utils.TorchaudioTestCase):
def test_waveform(self):
"""Validate the output dimensions of a WaveRNN model."""
upsample_scales = [5, 5, 8]
n_rnn = 512
n_fc = 512
n_classes = 512
hop_length = 200
n_batch = 2
n_time = 200
n_freq = 100
n_output = 256
n_res_block = 10
n_hidden = 128
kernel_size = 5
model = WaveRNN(
upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output
)
x = torch.rand(n_batch, 1, hop_length * (n_time - kernel_size + 1))
mels = torch.rand(n_batch, 1, n_freq, n_time)
out = model(x, mels)
assert out.size() == (n_batch, 1, hop_length * (n_time - kernel_size + 1), n_classes)
def test_infer_waveform(self):
"""Validate the output dimensions of a WaveRNN model's infer method."""
upsample_scales = [5, 5, 8]
n_rnn = 128
n_fc = 128
n_classes = 128
hop_length = 200
n_batch = 2
n_time = 50
n_freq = 25
n_output = 64
n_res_block = 2
n_hidden = 32
kernel_size = 5
model = WaveRNN(
upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output
)
x = torch.rand(n_batch, n_freq, n_time)
lengths = torch.tensor([n_time, n_time // 2])
out, waveform_lengths = model.infer(x, lengths)
assert out.size() == (n_batch, 1, hop_length * n_time)
assert waveform_lengths[0] == hop_length * n_time
assert waveform_lengths[1] == hop_length * n_time // 2
def test_torchscript_infer(self):
"""Scripted model outputs the same as eager mode"""
upsample_scales = [5, 5, 8]
n_rnn = 128
n_fc = 128
n_classes = 128
hop_length = 200
n_batch = 2
n_time = 50
n_freq = 25
n_output = 64
n_res_block = 2
n_hidden = 32
kernel_size = 5
model = WaveRNN(
upsample_scales, n_classes, hop_length, n_res_block, n_rnn, n_fc, kernel_size, n_freq, n_hidden, n_output
)
model.eval()
x = torch.rand(n_batch, n_freq, n_time)
torch.random.manual_seed(0)
out_eager = model.infer(x)
torch.random.manual_seed(0)
out_script = torch_script(model).infer(x)
self.assertEqual(out_eager, out_script)
_ConvTasNetParams = namedtuple(
"_ConvTasNetParams",
[
"enc_num_feats",
"enc_kernel_size",
"msk_num_feats",
"msk_num_hidden_feats",
"msk_kernel_size",
"msk_num_layers",
"msk_num_stacks",
],
)
class TestConvTasNet(common_utils.TorchaudioTestCase):
@parameterized.expand(
list(
itertools.product(
[2, 3],
[
_ConvTasNetParams(128, 40, 128, 256, 3, 7, 2),
_ConvTasNetParams(256, 40, 128, 256, 3, 7, 2),
_ConvTasNetParams(512, 40, 128, 256, 3, 7, 2),
_ConvTasNetParams(512, 40, 128, 256, 3, 7, 2),
_ConvTasNetParams(512, 40, 128, 512, 3, 7, 2),
_ConvTasNetParams(512, 40, 128, 512, 3, 7, 2),
_ConvTasNetParams(512, 40, 256, 256, 3, 7, 2),
_ConvTasNetParams(512, 40, 256, 512, 3, 7, 2),
_ConvTasNetParams(512, 40, 256, 512, 3, 7, 2),
_ConvTasNetParams(512, 40, 128, 512, 3, 6, 4),
_ConvTasNetParams(512, 40, 128, 512, 3, 4, 6),
_ConvTasNetParams(512, 40, 128, 512, 3, 8, 3),
_ConvTasNetParams(512, 32, 128, 512, 3, 8, 3),
_ConvTasNetParams(512, 16, 128, 512, 3, 8, 3),
],
)
)
)
def test_paper_configuration(self, num_sources, model_params):
"""ConvTasNet model works on the valid configurations in the paper"""
batch_size = 32
num_frames = 8000
model = ConvTasNet(
num_sources=num_sources,
enc_kernel_size=model_params.enc_kernel_size,
enc_num_feats=model_params.enc_num_feats,
msk_kernel_size=model_params.msk_kernel_size,
msk_num_feats=model_params.msk_num_feats,
msk_num_hidden_feats=model_params.msk_num_hidden_feats,
msk_num_layers=model_params.msk_num_layers,
msk_num_stacks=model_params.msk_num_stacks,
)
tensor = torch.rand(batch_size, 1, num_frames)
output = model(tensor)
assert output.shape == (batch_size, num_sources, num_frames)
class TestDeepSpeech(common_utils.TorchaudioTestCase):
def test_deepspeech(self):
n_batch = 2
n_feature = 1
n_channel = 1
n_class = 40
n_time = 320
model = DeepSpeech(n_feature=n_feature, n_class=n_class)
x = torch.rand(n_batch, n_channel, n_time, n_feature)
out = model(x)
assert out.size() == (n_batch, n_time, n_class)
|