1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
|
import torch
from parameterized import parameterized
from torchaudio.models import squim_objective_base, squim_subjective_base
from torchaudio_unittest.common_utils import skipIfNoCuda, torch_script, TorchaudioTestCase
class TestSquimObjective(TorchaudioTestCase):
def _smoke_test_objective(self, model, device, dtype):
model = model.to(device=device, dtype=dtype)
model = model.eval()
batch_size, num_frames = 3, 16000
waveforms = torch.randn(batch_size, num_frames, device=device, dtype=dtype)
model(waveforms)
@parameterized.expand([(torch.float32,), (torch.float64,)])
def test_cpu_smoke_test(self, dtype):
model = squim_objective_base()
self._smoke_test_objective(model, torch.device("cpu"), dtype)
@parameterized.expand([(torch.float32,), (torch.float64,)])
@skipIfNoCuda
def test_cuda_smoke_test(self, dtype):
model = squim_objective_base()
self._smoke_test_objective(model, torch.device("cuda"), dtype)
def test_batch_consistency(self):
model = squim_objective_base()
model.eval()
batch_size, num_frames = 3, 16000
waveforms = torch.randn(batch_size, num_frames)
ref_scores = model(waveforms)
hyp_scores = [torch.zeros(batch_size), torch.zeros(batch_size), torch.zeros(batch_size)]
for i in range(batch_size):
scores = model(waveforms[i : i + 1])
for j in range(3):
hyp_scores[j][i] = scores[j]
self.assertEqual(len(hyp_scores), len(ref_scores))
for i in range(len(ref_scores)):
self.assertEqual(hyp_scores[i], ref_scores[i])
def test_torchscript_consistency(self):
model = squim_objective_base()
model.eval()
batch_size, num_frames = 3, 16000
waveforms = torch.randn(batch_size, num_frames)
ref_scores = model(waveforms)
scripted = torch_script(model)
hyp_scores = scripted(waveforms)
self.assertEqual(len(hyp_scores), len(ref_scores))
for i in range(len(ref_scores)):
self.assertEqual(hyp_scores[i], ref_scores[i])
class TestSquimSubjective(TorchaudioTestCase):
def _smoke_test_subjective(self, model, device, dtype):
model = model.to(device=device, dtype=dtype)
model = model.eval()
batch_size, num_frames = 3, 16000
waveforms = torch.randn(batch_size, num_frames, device=device, dtype=dtype)
reference = torch.randn(batch_size, num_frames, device=device, dtype=dtype)
model(waveforms, reference)
@parameterized.expand([(torch.float32,), (torch.float64,)])
def test_cpu_smoke_test(self, dtype):
model = squim_subjective_base()
self._smoke_test_subjective(model, torch.device("cpu"), dtype)
@parameterized.expand([(torch.float32,), (torch.float64,)])
@skipIfNoCuda
def test_cuda_smoke_test(self, dtype):
model = squim_subjective_base()
self._smoke_test_subjective(model, torch.device("cuda"), dtype)
def test_batch_consistency(self):
model = squim_subjective_base()
model.eval()
batch_size, num_frames = 3, 16000
waveforms = torch.randn(batch_size, num_frames)
reference = torch.randn(batch_size, num_frames)
ref_scores = model(waveforms, reference)
hyp_scores = []
for i in range(batch_size):
scores = model(waveforms[i : i + 1], reference[i : i + 1])
hyp_scores.append(scores)
hyp_scores = torch.tensor(hyp_scores)
self.assertEqual(hyp_scores, ref_scores)
def test_torchscript_consistency(self):
model = squim_subjective_base()
model.eval()
batch_size, num_frames = 3, 16000
waveforms = torch.randn(batch_size, num_frames)
reference = torch.randn(batch_size, num_frames)
ref_scores = model(waveforms, reference)
scripted = torch_script(model)
hyp_scores = scripted(waveforms, reference)
self.assertEqual(hyp_scores, ref_scores)
|